Microcomputer Communications Project Assessment 2003/2004

Syedur Rahman

TABLE OF CONTENTS				
Introduction	2			
Overview of Hardware/Software	3			
Infra-red sensor	4			
Servo-Motor	5			
The Oscilloscope	6			
The Speaker	6			
Software Overview	6			
Basic Overview of Each Mode of Operation	0			
Radar Mode	12			
Profiler Mode	13			
Tracker Mode	14			
PseudoCode for Other Important Modules	16			
Design/Implementation Details and Alternatives	19			
Input/Output	19			
LookUp Tables and Arrays	19			
Conversion of Polar to Cartesian Co-ordinates	20			
Radar	21			
Speaker	22			
Testing and Evaluation	23			
Testing separate components	23			
I/R Sensor Testing	23			
Servo Motor Testing	26			
Speaker Testing	26			
Oscilloscope/Cartesian Coordinates Testing	26			
System Testing	27			
Radar Mode	27			
Tracker Mode	30			
Profiler Mode	31			
Full System Testing	33			
Technical Specification	34			
Costing	35			
Limitations and Future Improvements	36			
Appendix A – The Code	37			
Appendix B – Circuit Diagrams	68			
Block Diagram of Complete System	68			
IR Sensor and ADC Connections	69			
DACs, OpAmps and Oscilloscope X & Y inputs	69			
Servo Motor, Speaker and Oscilloscope Z-input	70			
Appendix C – Lookup Tables	71			
Reload High and Reload Low tables	71			
Sine and Cosine tables	75			
Distance Table	77			
Bibliography	79			

INTRODUCTION

After going to the introductory MCP lecture, I have to admit I was a bit intimidated (which is usually very hard for me to admit), by this assignment, which seemed rather complicated and tedious. All the talk about infra-red sensors, servo-motors and other things I haven't really handled in computer science courses before just made it seem that way. Later I realised all I had to do was stick to the basic principles taught in the previous hardware courses and not be that concerned with the other aspects of the system, especially those that brought back horrid memories of A-level physics.

The aim of this project was to integrate a Z80 processor system with a infra-red sensor attached to a rotating servo-motor to build some kind of radar (I realise it is not really a radar since that would require radio and not infra-red waves). Fortunately, this design would not be so low level, since this Z80 processor already came with its own data and address buses, RAM chips, external ports and an LCD display with a keypad.

There are three modes of function the completed system was supposed to be able to perform. First in radar mode, the system is supposed to sweep through a predefined angle and then display objects in the vicinity by showing their positions on the LCD display (as polar/cartesian coordinates) and also on the oscilloscope. There would also be a speaker to produce sound effects indicating whether an object is there when the sensor is at any particular angle.

In the tracker mode, the sensor is supposed to follow an object that is slowly being moved around and once again a sound effect indicates whether the object is still in the sensor's line of sight. Once again, the object's position would have to be shown on the LCD display and oscilloscope.

In the profiler mode, it sweeps through the predefined angle as in the radar mode, only after its done sweeping, it displays some kind of image on the oscilloscope which would show the shape of the object placed near the sensor. While the object is being scanned, the speaker would make some kind of sound indicative of the shape of the object.

My partner and I decided to stick to a very simple design as we did for CTS (even though that did not get us too many marks). Our main objective for this project was making a system that meets the minimum requirements with particular emphasis on simplicity, cost-effectiveness and of course minimum effort.

OVERVIEW OF HARDWARE/SOFTWARE

Fortunately, we were given the SBC board this time to construct our hardware around. This made this assignment quite ridiculously easy (to design at least, the implementation however was a nightmare as in any project). First of all the board, the RAM chips, the LCD display and the keypad are already wired into the Z80, so there was not much time spent in cutting out little bits of wire, sticking them to pins and later spending hours trying to figure out why our system was not working before discovering it was because of two wires switched around or a faulty breadboard (I was obviously very frustrated with that through out the CTS project). The fact that the Z80 address and data pins are in absolutely no meaningful order did not make things any easier in the previous assignment. The SBC board also comes with three 8-bit ports which make it very convenient to do I/O operations since these also act as latches. A program can also be downloaded from a linux terminal directly into the RAM, which makes testing a lot simpler than having to burn a ROM chip for every little change in code.

The basic external hardware required were:

- 1. Two digital-to-analogue converters (DACs) and opamps to plot points on the oscilloscope using digital data from the SBC board
- 2. An analogue-to-digital converter to convert the analogue reading from the infra-red sensor into digital data that can be understood and manipulated by the processor.

The ports on the SBC made it very easy to do I/O operations without involving the data bus or any address lines at all. This made the hardware construction very simple, however it also meant software required to run the system ended up being very complicated since we were using the three serial ports to drive six I/O devices (the two DACs, the ADC, the servo-motor, the speaker and the oscilloscope Z input).

The block diagram above describes how the system works with arrows indicating data flow

Infra-red sensor

The infra-red sensor generates an analogue voltage depending on the distance between any obstacle and the sensor. This analogue reading is fed in to the input of the ADC with the appropriate reference voltage to produce a digital output which is later converted by software into distances using a reading-to-distance look up table stored in memory.

Had this been a simple straight line we would have been able to use a simple equation for calculating distances from voltages (converted to digital values from the ADC). We had decided that our system would have a range between 10 and 60cm. As you can see at 10cm the voltage reading is about 2.1V. So the reference voltage we put in to the ADC was about 2.2V (using a potential divider, please see circuit diagrams for details).

Sensor Calibration

A simple program was written which took readings off the ADC and then displayed the digital reading received in hex on the LCD monitor. Several readings of ADC values were taken at different points between 10 and 60cm (which is the operational range of this system) at every 1cm. These values needed to be averaged (since the ADC values were inconsistent at times) and then a reading-to-distance table was constructed which mapped each binary value from the ADC to a distance value. Please see Testing/Evaluation for calibration tables.

In between binary values, which were not read for any specific distances (at each 1cm interval) simply mapped to the closest 1cm discrete value on the table.

Servo-Motor

The servo-motor is controlled by giving it a pulse of period 5ms, i.e. a frequency of 200Hz and the peak time of this pulse determines the angle it will rotate to. The Z80 has two internal clocks/timers, which came in very handy for this purpose. The timers can be initialised with reload values, and then the timer starts counting down beginning from the reload value. Once it has counted down to zero, it generates an interrupt (distinct for each timer) and then it starts counting down from the reload value again.

The interrupt routine was made such that it flips a bit on Port B every time the timer counts down to zero. After much experimentation while monitoring the output of the port using the oscilloscope we found that the timer takes 5ms to countdown with a reload value of 0600h. Controlling the motor was simple from then on, we could start with a certain peak time value with the reload register with the clock output on the port set to a 1 and then after its counted down to 0 (this representing a high on the output), we would flip the bit and at the same time set

the reload value to 0600h-peak (this representing a low on the output). So, we would have a wave of period 5ms and the peak period is controlled by the initial value put into the reload registers.

After making a few measurements, I discovered that there was a very linear relationship between angle and reload value. I took a few readings and plotted a graph and then using linear regression techniques I found a simple equation involving reload values and angle

Reload = 2.84444*angle + 208

Once again a table was constructed that mapped angles to reload values so that the program would put in the suitable reload value for each angle when it requires to move the sensor to that angle.

The Oscilloscope

The X-input of the oscilloscope was connected to the lower 7 bits of port B (via an digital to analogue converter and opamp) and the Y-input of the oscilloscope was connected to the lower 6 bits of port C (via an digital to analogue converter and opamp). I set the range of the system to be between 10 and 60cm. For a full sweep, this would require a semi-circle of radius 60 cm and let us assume we used one pixel per cm. Therefore the y-axis would need 60 divisions and the x-axis would need 120 division, so 6 bits (64 divisions) and 7 bits (128 divisions) were appropriate for x and y respectively. The Z-input was controlled by bit7 of port B. If the bit was set to a high (5V), this turns the beam off. This was very useful, since if we left the beam on while plotting between two points, there would be quite a few unwanted dots plotted on the screen in the mean time. So, this bit was set to 0 to turn the beam on, or set to 1 to turn it off.

For the x and y co-ordinates, polar co-ordinates (angle of sensor and distance read) had to be converted into cartesian co-ordinates. For this please see details on the get_coords module in the software modules section as well as the section on Design/Implementation

The Speaker

The speaker is controlled in a very similar way as the servo motor is. The processor has another timer, which can generate interrupts at a regular interval depending on the value put into its high and low reload registers. At each interval the speaker bit (bit6 on portC) is flipped giving a sound of a frequency dependent on the reload registers. In all cases, we are supposed to make a sound depending on the distance between the sensor and the object. This can be done by simply putting the ADC data read from the sensor (from portA) into the reload low register of timer1. I found that the sound is very different for objects at different distances, which is exactly what was required.

Software Overview

I decided to do a sweep of about 90 degrees, starting at 45 degrees and ending at 135 degrees at every one degree for the profiler and radar modes. However for the tracker mode, I decided to leave the range of angles between 0 and 180, since tracking something in a smaller range of angles just seems pointless.

The following shows a list of all modules in the program along with brief descriptions of what they do. I would have preferred to draw a diagram showing the relationships between modules but unfortunately this would take too much space and be too complicated to be legible at all.

Procedure	Modules Called			
(parameters)		(parameters)		
main_menu	Displays the main menu options. Checks	clear		
	value of mode, then runs appropriate	display_menu		
	subroutine (1=radar, 2=tracker,	radar		
	3=profiler)	tracker		
		profiler		
radar	Performs the radar mode	init angle45		
		enable servo timer		
		servo delay full		
		disable servo timer		
		rotate to angle(angle)		
		get distance		
		clear		
		display radar mode		
		display angle(angle)		
		plot outline (mode)		
		get coords (angle.		
		distance)		
		plot point (x coord.		
		v coord)		
		beam on		
		beam off		
		display angle distance		
		(angle, distance)		
		make sound		
tracker	Performs the tracker mode	init angle0		
		servo delay full		
		rotate to angle (angle)		
		get distance		
		clear		
		display_tracker_seeking		
		display_tracker_locked		
		display_angle_distance		
		(angle, distance)		
		plot_outline(mode)		
		get_coords (angle,		
		distance)		
		plot_point(x_coord,		
		y_coord)		
		beam_on		
		beam_off		
		make_sound		
		show_profile		
profiler	Performs the profiler mode	init_angle45		
-	*	enable servo timer		

		servo delav full
		disable servo timer
		rotate to angle(angle)
		get distance
		clear
		display radar mode
		display angle distance
		(angle distance)
		plot outline(mode)
		get coords (angle
		distance)
		plot point (x coord
		v coord)
		beam on
		beam off
		make sound
		show profile
show profile	Uses data from profiler (which enters	plot_outline (mode)
snow_prome	values into the x coords and x coords	plot_outilie (mode)
	table) to plot points displaying the	plot_point (x_coord,
	profile of the object scanned earlier	y_coord)
anable correctioner	Enables timer() of the processor	
disable serve timer	Dischlas timer() of the processor	
disable_servo_timer	When times apparentee on interrupt the	
servo_umer_toggie	when timero generates an interrupt, the	
	output to the servo motor (PortC B/) is	
	toggled and it is set such that the next	
	(i.e. siving a wave of pariod 5mg)	
11 1	(i.e. giving a wave of period 5ms)	
enable_speaker_timer	Enables timer 1 of the processor	
disable_speaker_timer	Disables timer1 of the processor	
speaker_timer_toggle	When timer I generates an interrupt, the	
	output to the speaker (PortC B6) is	
	toggled, giving a square wave	
rotate_to_angle	Sets timer0's reload registers using	enable_servo_timer
	appropriate values from the reload_high	disable_servo_timer
	and reload_low tables corresponding to	
	the angle given.	
	Runs timer0 for a short time (enough for	
	a maximum 5 degree rotation), allowing	
	the servo to rotate to that angle and then	
	disables timer0.	
get_coords (angle,	Gets polar co-ordinates from angle and	
radius)	distance and converts them into	
	cartesian co-ordinates and stores the	
	results in global variables x_coord and	
	y_coord to be plotted on the	
	oscilloscope later	
	Note: x_coord is actually the	
	oscilloscope x-coordinate (with 64 as	
	the center of our 128bit x-axis display)	

plot point (x coord,	Puts x coord into the lower 7 bits of	beam on
y coord)	PortB (oscilloscope x-input) and	beam off
	y coord into the lower 6 bits of PortC	_
	(oscilloscope y-input). Turns the	
	oscilloscope beam on for a short while	
	to plot the point on the oscilloscope and	
	then tunrs the beam off	
get_distance	Reads value from ADC and using the	
	distance table converts the ADC value	
	into distance from sensor and stores this	
	value in the global variable distance.	
	(Four readings of distances are taken	
	and only the average is returned)	
display_angle_distanc	Displays current angle, distance, x-	display_bin_to_dec (angle)
e (angle, distance)	coordinate and y-coordinate on LCD	display_bin_to_dec
	screen (uses display_bin_to_dec to	(distance)
	convert these numbers)	display_bin_to_dec
		(x_coord)
		display_bin_to_dec
		(y_coord)
		delay_keypad
display_bin_to_dec	Converts the variable number, which is	display_character (digit)
(number)	in binary into a 3 digit decimal number	delay_keypad
	and displays each of these digits on the	
	LCD	
display_character	Uses the ASCII code stored in register	delay_keypad
(register a)	A to display the character on the LCD	
	and then waits for a very short time to	
	allow the character to appear on it	
increase_angle3	Increments global variable angle by 3	
decrease_angle3	Decrements global variable angle by 3	
increase_angle2	Increments global variable angle by 2	
decrease_angle2	Decrements global variable angle by 2	
make_sound	Using the ADC value as the frequency,	enable_speaker_timer
	it enables the speaker for a short period	delay_sound
	indicating distance of the object (since it	disable_speaker_timer
	determines the frequency of the sound	
	produced)	
keypad_int	When the keypad is pressed, global	
	variable mode is updated according to	
	key pressed (if invalid mode i.e. not	
	between 1 and 3, then mode is set to 0,	
	which causes all mode modules to return	
	to the main menu)	
clear	Sends command to LCD to clear the	
	scren	
beam_on	Turns oscilloscope beam on by setting	
	the Z-input to the oscilloscope (Port B	
	Bit7) to a logic 0 (0V)	
beam off	Turns oscilloscope beam on by setting	

	the Z-input to the oscilloscope (Port B	
	Bit7) to a logic 1 (5V)	
plot_outline	Plots an outline on the oscilloscope. It	beam_on
	shows all the extreme points plot-able	beam_off
	by the system on the oscilloscope and it	get_coords (angle, radius)
	shows a small line of radius 10 pixels at	plot_point
	an angle corresponding to global	
	variable angle, indicating the direction	
	the sensor is pointing	
	For radar and profiler modes it displays	
	two lines of radius 64, one at 44 degrees	
	and one at 136 degrees indicating the	
	sweep-able region	
init_vector_table	Initialises the vector table, which the	
	processor uses to call interrupt servicing	
	routines when the keypad or the clocks	
	generate an interrupt	
init_ports	Sets it such that PortA is used for input	
	(ADC), PortB is used for output (Z and	
	X inputs for the oscilloscope) and PortC	
	is used for output (speaker, servo motor	
	and oscilloscope-Y inputs)	
init_angle0	Sets angle to 0 degrees, loads	enable_servo_timer
	appropriate reload values into timer0,	servo_delay_full
	enables it, gives the servo ample time	disable_servo_timer
	(using delay_servo_full) to rotate to 0	
	degrees and then disables timer0	
init_angle44	Sets angle to 44 degrees, loads	enable_servo_timer
	appropriate reload values into timer0,	servo_delay_full
	enables it, gives the servo ample time	disable_servo_timer
	(using delay_servo_full) to rotate to 44	
	degrees and then disables timer0	
delay_servo_full	Produces a just about long enough delay	
	for the servo to rotate a large angle (>	
	90 degrees)	
delay_servo_short	Produces a just about long enough delay	
	for the servo to rotate a large angle (< 5	
	degrees)	
delay_keypad	Produces a just about long enough delay	
	required for a character to appear on the	
	LCD	
display_menu	Displays the main menu options on LCD	
display_radar_mode	Displays "Radar Mode" on LCD	
display_profiler_mode	Displays "Profiler Mode" on LCD	
display_tracker_seekin	Displays "Tracker-Seeking" on LCD	
g		
display_tracker locke	Displays "Tracker-Locked" on LCD	
d	· ·	

display_rotating	Displays "Rotating Back" on LCD	
display_object	Displays "Object Detected" on LCD	

Global Variables

Since this a low level language, all variables used were global. They were declared as having specific memory locations at the start of the program in such locations that they did not overlap with any part of the program or loop up tables in memory.

Variable Name	Purpose	Modules used in
angle	Stores the current angle at which the sensor is	radar
_	positioned in all modes or the angle of the	tracker
	point being plotted on the screen.	profiler
		increase_angle3
		decrease_angle3
		increase_angle
		decrease_angle
		rotate_to_angle
		get_coords
		display_angle_distance
distance	Stores the current distance of the object being	get_coords
	detected in front of the sensor	display_angle_distance
		radar
		tracker
		profiler
objectdistance	Stores the distance between the centre of the	radar
	last object detected and the sensor in radar	
	mode	
objectangle	Stores the angle at which the centre of the last	radar
	object detected was in radar mode.	
middistance	Stores the distance at which the object was	tracker
	previously in tracker mode	
midangle	Stores the angle at which the centre of the	tracker
	object being tracked was last detected in	
	tracker mode	
register d	Temporarily holds the value of reload register	clock_timer_toggle
	high for the servo timer (timer 0)	rotate_to_angle
register e	Temporarily holds the value of reload register	clock_timer_toggle
	low for the servo timer (timer 0)	rotate_to_angle
radius	While converting polar to cartesian co-	radar
	ordinates through the get_coord procedure,	tracker
	radius is used the parameter	profiler
		get_coords
x_coord	Stores the x-coordinated of last point whose	get_coords
	co-ordinates were converted from polar to	radar
	cartesian using get_coords	tracker
		profiler
		display_angle_distance
		plot_point

y_coord	Stores the x-coordinated of last point whose co-ordinates were converted from polar to cartesian using get_coords	get_coords radar tracker profiler display_angle_distance plot_point
mode	Stores the mode that the program is now running (1, 2 or 3). When any key is pressed on the keypad the value of mode is changed accordingly.	menu tracker profiler radar

Basic Overview of Each Mode of Operation

Radar Mode

The radar module works by first setting the angle to 45 degrees and allowing the motor enough time to rotate to that angle. From then on it takes distance readings at each angle (incrementing and rotating to the next angle) and then uses them to find out whether there is an object in the vicinity. An object is often detected at two or more angles, however the actually angular position of the object is one where the distance reading is the lowest but in radar mode we'd like an object to show up only once on the scope.

So, when something is detected (i.e. distance < 60 cm), it is treated as the start of the object (ObjectAngle and ObjectDistance are set to current angle and distance), and for the next subsequent angles the object's angle and distance are updated in case the distance is less than what it was at the earlier angle (i.e. if distance < ObjectDistance reset ObjectDistance and ObjectAngle to current ones). After nothing is detected once again, the distance and angle of the object are displayed on the LCD and oscilloscope (using ObjectAngle and ObjectDistance which are subsequently set to 0 and 64 respectively, to allow the detection of a new object) and a sound is made on the speaker. After reaching 135 degrees, the radar procedure simply starts again at 45 degrees and does the sweep again. However, it keeps checking if the mode has been changed (by the keypad_int procedure which services interrupts from the keypad updating the mode), in which case it returns to the main menu.

Module Radar

```
Repeat
           Call init_angle45
                                 # set servo to start sweep at 45degrees
           Call enable_servo_timer
           Call servo_delay_full
           Call disable_servo_timer
           ObjectDistance = 64 # initialising last object detected at infinity
           Repeat
                 Call enable_servo_timer
                 Call delay_servo
                 Call get_distance
                                    # get distance and put it in (distance)
                 Call display_angle_distance # lcd displays angle,
distance etc.
                                       # show sweep-able region
                 Call plot_outline
```

```
If distance < ObjectDistance then
                      # new centre of object found
                      ObjectDistance = distance
                      ObjectAngle = angle
                 End if
                 If distance > 60 and ObjectDistance < 60 then
                       # if there is a blank space means end of object
                       # show details on object detected
                      Tempangle = angle
distance = ObjectDistance
                       angle = ObjectAngle
                       call display_angle_distance
                       call get coords(angle, distance)
                       call plot_point(x_coord, y_coord)
                       call beam_on
                      call make_sound
                       # reset object details to infinity
                      ObjectAngle = 0
                      ObjectDistance = 64
                      Angle = Tempangle
                 End if
                 Call increase_angle # angle = angle + 1
           Until angle > 135 or mode <> 1
     Until mode <> 1
End Radar
```

Profiler Mode

The profiler mode works very similarly to the radar mode, starting a sweep by rotating first to 45 degrees and then incrementing the angle by two while taking distance measurements on each angle. However, at each angle it also shows the angle, distance, x and y coordinates on the LCD display and plots these co-ordinates on the oscilloscope. It stores the x-coordinate and y-coordinate at each particular angle in two separate arrays using the angle as the offset. It also makes a sound at each angle at a frequency dependent on the distance reading. After its done sweeping to 135 degrees, it then shows the profile of the object scanned. This is done by the module show_profile, which simply takes out x and y coordinates out of the two arrays, starting the offset at 45 and plots each point, each time increasing the offset by 1 until it reaches 135 and then it starts again from 45 and keeps looping around, effectively showing the "profile" of the object on the oscilloscope screen.

Module Profiler

```
Call init_angle45  # set servo to start sweep at 45degrees
Call enable_servo_timer
Call servo_delay_full
Call disable_servo_timer
Repeat
    Call rotate_to_angle
    Call get_distance # calculate distance and put it in variable
distance
    Call display_angle_distance
    Call plot_outline
```

```
if distance < 60 then # stores oscilloscope co-ordinates in
      arrays if distance is valid
            Call get_coords(angle, distance)
            Call plot_point(x_coord, y_coord)
            Call make_sound
            x_coords(angle) = x_coord
            y_coords(angle) = y_coord
      else
            x_coords(angle) = 0
            y_coords(angle) = 0
      End if
      Call increase_angle (angle = angle + 1)
Until angle > 135 or mode >< 3
           # keep showing profile until mode changed via keypress
Repeat
     Call show profile
Until mode >< 3
```

End Radar

Module show_profile

```
Call plot_outline # display sweep-able region on scope
angle = 45 # start showing points from that at 45d
Repeat
# show all points stored in x_coords and y_coords unless they're blanks
        x_coord = x_coords(angle)
        y_coord = y_coords(angle)
        If x_coord > 0 and y_coord > 0 then
            Call plot_point(x_coord, y_coord)
        End if
        Call increase_angle (angle = angle + 1)
Until angle > 135
Call plot_outline
```

End show_profile

Tracker Mode

The tracker mode first uses a similar code as the radar (which I prefer to call a seeker) to sweep starting at 0 degrees and stops when it finds an object at 30cm (that is the operational range I set for the tracker).

Then it sets MidDistance and MidAngle as current distance and angle respectively. It then adds three degrees to the angle, rotates to the right and takes a new distance reading, if this distance is less than MidDistance (indicating the object has moved to the right) it updates MidDistance and MidAngle with current values. Otherwise, it subtracts three degrees from MidAngle, rotates to the left and takes a new distance reading, and then updates MidDistance and MidAngle if this distance reading is less than MidDistance (i.e. object has moved to the left). Another little enhancement to the tracker is that once it sees that the object is moved to the left, the next time it first checks to the left and the same thing when the object has moved to the right. This is very sensible since we can assume the object would move in the same direction more often than change direction.

It keeps looping around like this until it sees that the object is no longer anywhere in that 6 degree vicinity, i.e. MidDistance > 60. In this case, it loops back to the seeker part and finds the object again before tracking it. It makes a sound if the object is within 30cm, or else it just keeps quiet.

Module tracker

```
Repeat
       ###### Seeker Part locates an object first within 30cm
       Repeat
              Call init angle0 (angle = 0)
              Call servo delay full
              Repeat
                     Call rotate_to_angle
                     Call get_distance
                     Call display_angle_distance
                     Call plot_outline
                     call get_coords(angle, distance)
                     call plot_point (x_coord, y_coord)
                     Call increase_angle3 (angle = angle + 3)
              Until angle > 180 or mode <> 2 or distance < 30
       Until mode <> 2 or distance < 30
       ###### Seeker ends when an object is located at less than 30cm
       Call decrease_angle3 (angle = angle - 3)
       MidAngle = angle  # set current angle, distance as mid values
       MidDistance = distance
       Repeat
              call get_distance
              angle = MidAngle
              Middistance = distance
              Call display_angle_distance
              If distance < 30 then Call make_sound
              Call plot_outline
              call get coords (angle, distance)
              call plot_point (x_coord, y_coord)
              If angle < 178 then
                     call increase angle3 #checking right
                     call rotate_to_angle(angle)
                     call get_distance
              End if
              If distance < MidDistance then
                     MidAngle = angle #object moved right
              Else
                     If angle > 2 then
                             Repeat
                                    angle = MidAngle #checking left
                                    decrease_angle3
                                    call rotate_to_angle
```

```
call get_distance
                             If distance < MidDistance then
                                    MidAngle = angle #moved left
                                    Middistance = distance
                                    Call display_angle_distance
                                    If distance < 30 then Call make_sound
                                    Call plot_outline
                                    call get_coords(angle, distance)
                                    call plot_point(x_coord, y_coord)
                            Else
                                    angle = MidAngle #reset angle
                                    rotate_to_angle
                            End if
                     Until distance > MidDistance #keep checking left until
       object no longer in left
              End if
       End if
Until middistance > 60 or mode <> 2
```

Until mode <> 2

End tracker

PseudoCode for Other Important Modules

Module rotate_to_angle (angle)

sets appropriate reload values into timer 0 for angle and then enables timer 0 for long enough for a short rotation (1-3 degrees)

timer0_reload_high = reload_high_table(angle)
timer0_reload_low = reload_low_table(angle)

call enable_timer0
call servo_delay
call disable_timer0

End rotate_to_angle

Module make_sound

outputs a wave to speaker to make a sound with frequency dependent on distance/ADC value

```
Temp = ADC_Data
Temp = Temp OR 0x10
# Or with 0x10 otherwise too small a period would cause too frequent interrupts and
cause the program to behave abnormally
timer1_reload_high = 0
timer1_reload_low = Temp
call enable_speaker_timer
call delay_sound
call disable_speaker_timer
```

End make_sound

Module display_bin_to_dec (number)

```
# displays a binary number put into number as a 3 digit decimal number on the lcd
H = 0
# to find hundreds digit keeps subtracting hundred from number until number < 100
Repeat
       number = number - 100
       H = H+1
Until number < 100
H = H-1
If H > 0 then
       A = H + 0x30
       # 0x30 is 0 in ASCII, 1 is 0x31 and so on.
       Output_to_LCD(A)
       Call delay lcd
End if
H = 0
# to find tens digit keeps subtracting ten from number until number < 10
Repeat
       number = number - 10
       H = H+1
Until number < 10
H = H-1
A = H + 0x30
Output_to_LCD(A)
Call delay_lcd
# whatever is left is the units digit
H = number
A = H + 0x30
Output_to_LCD(A)
Call delay_lcd
```

End display_hex_to_decimal

Module display_angle_distance (angle, distance)

Displays current angle, distance, x-coordinate and y-coordinate on LCD screen (uses display_bin_to_dec to convert these numbers)

```
Call display_hex_to_decimal(angle)
Output_to_LCD("o ")
```

If distance <= 60 then
 Call display_hex_to_decimal(distance)
 Output_to_LCD("cm ")</pre>

Call get_coords

x_coord and y_coord hold oscilloscope co-ordinates, the x_coord needs to be subtracted/added from 64 to give cartesian co-ordinates

Output_to_LCD(",")

Call display_hex_to_number(y_coord)

End if

End display_angle_distance

Module get_coords (angle, radius)

End get_coords

Module get_distance

reads in IR sensor from ADC and converts it to distance. Takes 4 readings and does average for greater accuracy

```
ADCSum = 0
For I = 1 to 4
ADCSum = ADCSum + Input_from_ADC
Next
```

```
distance = distance_table(ADCSum / 4)
```

End get_distance

DESIGN/IMPLEMENTATION DETAILS AND ALTERNATIVES

As I previously discussed briefly in the introduction, our main objective was to keep the hardware as simple as possible, not only because it is simply easier for us to put together but it also meant that the entire system would not break because of a simple mistake in wiring.

Input/Output

We decided to use the ports to perform all I/O operations. The good thing was that all these ports have dedicated data buses (or so to speak), which would mean they could be directly connected to each of the devices they are driving. So, there would be no need of lots of wires coming out of the data bus going into each of the devices. If we had used a discrete I/O scheme, we would also need a decoder to enable each particular device at a time (so that's one chip saved although I realise that hardly matters).

One major disadvantage of using just the three ports is that, we only had 24 bits to share among all the devices. The ADC definitely required an entire port since a port can only work as either an input or output device but not both at the same time. We knew we needed a bit each for the speaker, the timer and the oscilloscope's Z-input. This left us with 13 bits to be shared between the X and Y inputs. This actually made perfect sense. The X input would require twice the number of bits as the Y inputs (consider a semicircle with a certain radius, it would be twice as long horizontally than vertically). We decided to keep 7 bits (128 values) for X and 6 bits (64 values) for Y. I realise this might seem like a pretty low resolution but once again everything fell in place perfectly. I had decided to keep the operational range of the system between 10 and 60cm since beyond that the voltages returned by the sensor via the ADC were highly inconsistent (e.g. 70cm often would return the same voltage as 75cm). Even between 10 and 60cm, distances returned were not very accurate. I would say the accuracy was at its best at 1cm division between 10 and 30cm and about 2cm from then on. So, having one pixel to represent 1cm on the oscilloscope seemed like a very good idea, which is exactly what we had with 128 bits for X (64cm or pixels) on each side) and 64 bits for Y (64 bits or pixels).

Look-Up Tables and Arrays

Look up tables for were used for almost all conversions, simply because some functions were simply too difficult to implement in assembly, or would take up too many clock cycles. Also, we had enough memory to incorporate these lookup tables without having to worry about any of the instructions or the stack overlapping with them (please see the appendix for these tables)

Lookup tables were also used to store ADC values that directly mapped to distances stored in hex, since the function relating them seemed to be exponential and it would be very difficult to do this conversion in assembly.

The values for high and low reload registers to be put into timer0 for each angle were also put in two separate lookup tables. Even though the desired function reload = 2.844*angle + 208 could be easily performed by the Z80 multiple instruction, it seemed like a waste of time doing this so often when looking up a table is so much less time-consuming.

In the profiler mode two arrays are used to store x and y coordinates of IR readings converted into oscilloscope co-ordinates by the get_coords module. The x and y arrays start at memory locations FA00 and F900 respectively and use the angle as an offset. FA00 and F900 were

chosen since they are large enough to not overlap with any part of the program memory and small enough not to overlap with the stack, which starts at FFFF.

Please see next topic on the use of lookup tables for finding cartesian co-ordinates from polar ones. For a full list of lookup tables please see the appendices.

Conversion of Polar to Cartesian Co-ordinates

The procedure get_coords converted the polar co-ordinates stored in global variables angle and radius to Cartesian co-ordinates and stored them in global variables x_coord and y_coord. These were not really the orthodox polar or Cartesian co-ordinates, since the angle 0 started on the xaxis and went clockwise. The Cartesian co-ordinates were actually oscilloscope co-ordinates, so real (0,0) would be returned as (64,0) (since with a range of 0-128 on the x-axis, 64 is the centre). The lookup tables stored sine and cosine for each angle in 8 bits in a fixed point format (assuming the point is right before the first bit), e.g. Sine 90 = 1 is stored as FFh meaning 0.11111111, or Sin 30 = 0.5 is stored as 80h meaning 0.10000000. Only absolute cosine values were put into the table, these were later taken into account when calculating oscilloscope coordinates. The y-coordinate would simply be radius*sine(angle). This is done by putting the value for the corresponding angle from the sine table in one register (h) and then multiplying it with another register that contains the radius (1). The result is stored in hl, if we just ignore the last 8 bits of the results (ignore register 1 and only take into account h), we have the result of the multiplication without the fraction bit. The x-coordinate is calculated similarly by multiplication, only afterwards the multiplication result is added to 64 for angles >= 90 or subtracted from 64 for angles < 90. The diagram below explains the geometrical calculations/methods used to calculate the x and y inputs of the oscilloscope

The only alternative to storing the sine and cosine values in tables would be to actually have a function that calculates sine and cosine values using Taylor expansions for sine and cosine which (like almost everything else) are simply too difficult and time consuming to program in assembly. There was also the incredibly insane idea of using two dimensional tables (one each for sine and cosine) which mapped distances and sine/cosine values to their multiplicands (or the Cartesian co-ordinates), however we were not given "that much" memory to work with.

Radar

I faced one particular problem when detecting objects in radar mode. The cylindrical tubes we were provided with gave proper readings of distances only the sensor detected the centre of the tubes. E.g. an object at 20cm and 90 degrees, would be read so only at 90 degrees, however at 92 or 88 degrees (which are the circular edges of the tube), a distance reading of 50 cm might be returned. So for two objects picked up during a sweep, when points were plotted on the oscilloscope they ended up like

The ideal situation would be to show a dot each for each object detected. This obviously was a software flaw. I had to rewrite the radar module such that, once something is detected < 60cm, it is treated as the beginning of the object and its angle and distance are stored in variables ObjectAngle and ObjectDistance respectively (which were initialised to 0 and 60 at the start of a sweep). As subsequent points of the object are detected, ObjectAngle and ObjectDistance are updated if the current distance reading is less than ObjectDistance, such that ObjectDistance finally stores the nearest distance and ObjectAngle thus holds the angle at which the centre of the object is located. When a reading >=60cm is detected again, we know that is the end of the object and thus the co-ordinates of the object are plotted on the scope and displayed on the LCD (using ObjectDistance and ObjectAngle, which are then reset to 64 and 0 respectively, allowing the detection of a new object). So, in the end the oscilloscope display looked like this

Speaker

We also had a major problem getting the speaker working. The speaker was set such that a square wave of frequency dependent on the ADC value was being outputted to bit6 of PortC. However this did not make any sound when the speaker was connected. I checked the output of the bit6 using a probe on the oscilloscope to discover that the waveform was well within the audible frequency range. Strangely enough, when I wrote a separate procedure to test the speaker, it worked perfectly. My partner was having similar problems and his test procedures worked perfectly too but the speaker stopped working when it was integrated into the main program (for the radar, tracker or profiler). It later occurred to us that it may be because, only one chip is used to drive all the ports, all of which are used in the main program but not in our test speaker programs. Since the speaker had a high impedance and other bits of all the ports were being set to 5Vs at the same time, the output was simply not powerful enough to drive the speaker. But then, we had absolutely no idea how to solve this problem. This is when we had a stroke of genius. I don't remember which one of us had this brilliant idea, I would like to think it was my idea though, which was to ask the lab technician Ron what could be done about this. He suggested putting in a capacitor in series with the speaker and that worked perfectly, we were finally getting a nice smooth sound quite distinct over different distance readings. We really owed Ron for this one and we also owe him for being very understanding when we somehow managed to blow up the CMOS chip that drives the ports (in a completely unrelated incident when simply everything stopped working and I had no idea why until later I found out that the ports were not responding at all).

TESTING AND EVALUATION

As you can see a more or less bottom up approach was used to put the system together. Each component was first tested separately using separate test programs and then the entire program (i.e. each of the operation modes) was tested later.

Testing separate components

I/R Sensor Testing

As explained earlier, the sensor was calibrated by putting an object at distances between 10 and 60cm at every 1cm and then taking reading the value given by the ADC (I had initially used LEDs to display these values, but later I wrote a program which displayed the value in hex on the LCD display). Three readings were taken at each distance and the average was taken, forming a ADC reading-to-distance table (please see tables in appendix). A test procedure was written to check whether this works by simply incorporating the table into this test program and then using the get_distance module (see Software modules) to convert the ADC readings into distances, which were displayed on the LCD. I placed objects at different distances and took down values the LCD showed and checked whether the distance displayed was the same as the actual distance from the sensor the object was placed at. I was very happy to see these readings were nearly perfect between 10 and 30cm, had an error of +/-1 from 30-40cm, +/-2 from 40-50 cm and about +/-4 from 50-60cm.

Distance(cm)	Reading1	Reading2	Reading3	Average	Adjusted
9	F3	F6	F9	F6	
10	E0	E4	E5	E3	E3
11	D1	D0	CC	CF	CF
12	C2	C0	C1	C1	C1
13	B0	B3	B0	B1	B1
14	A2	A5	A5	A4	A4
15	9B	97	99	99	99
16	91	92	8D	90	90
17	86	89	89	88	88
18	80	81	85	82	82
19	7C	7E	7A	7C	7C
20	77	74	74	75	75
21	73	71	6C	70	70
22	6A	6D	6D	6C	6C
23	69	67	6B	69	69
24	61	65	66	64	64
25	61	5F	60	60	60
26	5D	5F	5B	5D	5D
27	5A	5D	5A	5B	5B
28	58	57	59	58	58
29	54	57	54	55	55
30	52	53	54	53	53

The following table shows the calibration readings for the IR sensor

31	51	50	4F	50	50
32	4E	4E	4B	4D	4D
33	4A	4C	4B	4B	4B
34	49	4B	47	49	49
35	47	49	45	47	47
36	48	44	43	45	45
37	43	44	42	43	43
38	3F	42	42	41	41
39	42	40	3E	40	40
40	3F	3D	41	3F	3F
41	3E	3F	3D	3E	3E
42	3C	3E	3D	3D	3D
43	ЗA	3D	3D	3C	3C
44	3D	ЗA	ЗA	3B	3B
45	ЗA	3C	38	ЗA	3A
46	36	37	3B	38	38
47	35	38	38	37	37
48	37	34	34	35	35
49	33	33	36	34	34
50	31	36	31	32	33
51	32	32	35	33	32
52	32	33	33	32	31
53	31	2F	30	30	30
54	2F	2E	33	30	2F
55	2F	2D	2D	2D	2E
56	2E	2A	32	2E	2D
57	2A	2B	2D	2B	2C
58	2B	2C	2A	2B	2B
59	2A	29	28	29	2A
60	28	2B	2B	2A	29
61	26	28	2A	28	28
62	29	27	26	27	27
63	28	26	27	27	26
64	25	25	26	25	25

(The average readings were later adjusted to form an ADC-to-Distance table since at some distances e.g. 53 and 54 the average ADC reading seemed to be the same at 30h, so I had adjusted 54 to be 2Fh instead. Please see Appendix C for the final lookup table made from this data. Please note that my partner and I calibrated the sensor together, so we are very likely to have almost the same distance look-up table)

Actual	Distance	Distance	Distance	Distance	Distance	Average	Max Error	Standard
Distance	Reading I	Reading2	Reading3	Reading4	Reading5	Distance	+/-	Deviation
10	10	10	10	10	10	10.00	0	0.000
10	10	10	10	10	10	11.00	0	0.000
10	10	10	10	10	10	10.00	0	0.000
12	12	12	12	12	12	12.00	0	0.000
13	13	13	13	13	13	13.00	0	0.000
14	14	14	14	14	14	14.00	0	0.000
15	15	15	15	15	15	15.00	0	0.000
16	16	16	16	16	16	16.00	0	0.000
1/	1/	1/	1/	1/	1/	17.00	0	0.000
18	18	18	18	18	18	18.00	0	0.000
19	19	19	19	19	19	19.00	0	0.000
20	20	20	20	20	20	20.00	0	0.000
21	21	21	21	21	21	21.00	0	0.000
22	22	22	22	22	22	22.00	0	0.000
23	23	23	23	23	23	23.00	0	0.000
24	24	24	24	24	24	24.00	0	0.000
25	25	25	25	25	25	25.00	0	0.000
26	26	26	26	26	26	26.00	0	0.000
27	27	27	27	27	27	27.00	0	0.000
28	28	28	28	28	28	28.00	0	0.000
29	29	29	29	29	29	29.00	0	0.000
30	30	30	30	30	30	30.00	0	0.000
31	31	31	31	31	31	31.00	0	0.000
32	32	32	32	32	32	32.00	0	0.000
33	33	33	34	33	33	33.20	1	0.400
34	34	35	34	33	34	34.00	1	0.632
35	35	34	34	34	35	34.40	1	0.490
36	36	36	36	36	36	36.00	0	0.000
37	37	37	38	37	38	37.40	1	0.490
38	38	38	38	37	39	38.00	1	0.632
39	39	39	40	40	38	39.20	1	0.748
40	41	40	41	39	40	40.20	1	0.748
41	41	41	42	42	42	41.60	1	0.490
42	42	41	43	42	41	41.80	1	0.748
43	43	45	42	42	44	43.20	2	1.166
44	44	44	43	46	45	44.40	2	1.020
45	46	45	45	45	45	45.20	1	0.400
46	46	47	46	45	47	46.20	1	0.748
47	45	47	48	47	47	46.80	2	0.980
48	49	48	48	48	50	48.60	2	0.800
49	49	49	50	49	50	49.40	1	0.490
50	50	50	50	50	51	50.20	1	0.400
51	51	51	52	51	51	51 20	1	0.400
52	52	53	50	52	53	52.00	2	1 095
53	53	53	55	52	50	52.60	3	1.625

Tests run with different distances to check if sensor calibrated properly

54	54	55	54	52	55	54.00	2	1.095
55	56	55	57	54	57	55.80	2	1.166
56	57	53	58	56	57	56.20	3	1.720
57	58	60	56	56	59	57.80	3	1.600
58	59	58	60	57	59	58.60	2	1.020
59	60	61	57	62	59	59.80	3	1.720
60	62	59	63	60	59	60.60	3	1.625
61	64	58	58	62	57	59.80	4	2.713
62	62	Ν	59	60	63			
63	64	N	62	N	N			
64	N	60	Ν	Ν	62			

(N = Nothing detected)

Servo Motor Testing

The increase/decrease angle procedures along with the rotate_to_angle procedures were used to rotate the sensor to different angles. The rotate_to_angle procedure uses the reload lookup tables to put an appropriate value into the timer such that the required pulse is produced. I tried several angles and then later sweeps (slowly increasing the angle after a short period of time) to check whether the motor worked properly and whether in fact the lookup tables generated using linear regression was right and as expected everything was fine. Finally, after each sweep between certain angles, I made it rotate back to its start angle and repeat the sweep.

Speaker Testing

The speaker was initially tested by feeding its timer different reload values just to check whether it made a sound, and later a speaker test was added to the IR sensor test program, such that the speaker made a sound depending on the distance read (this was done by putting the ADC value read into the speaker timer's reload register). This made a very distinct sound at different distances however the program seemed to crash when the object was too far away, this was because when the ADC value was too small, the frequency was too high and the speaker timer generated too many interrupts, thus stopping the rest of the program from executing. This problem was fixed by doing an OR 0x10 on the ADC value before putting it into the speaker timer.

Oscilloscope/Cartesian Coordinates Testing

I started off by first writing a procedure that made simple shapes such as boxes or lines appear on the oscilloscope using preset x and y co-ordinates (using the plot_point procedure). The zinput was checked by switching the beam off for certain points and later seeing whether these points appeared on the oscilloscope and indeed they did not (or at least they appear very lightly).

The get_coords procedure converted polar co-ordinates to cartesian co-ordinates (rather polar to oscilloscope co-ordinates), by looking up the sine and cosine tables for each angle and then multiplying them with distances. I wrote a simply test program which stored these x and y coordinates in memory and checked whether get_coords works by running the program on the ZIM emulator for the Z80. I then wrote the display_angle_distance which displayed current angle, distance, x and y coordinates on the LCD displays and this seemed fine for all test values to. I later used plot_point to plot some points on the oscilloscope. A more comprehensive test was carried out I suppose, when I wrote a procedure that starts with a certain distance and plots

points for angles 0 to 180 degrees and then increments the distance, plot points for angles 0 to 180 degrees and so on. This gave images of semicircles of increasing radii on the oscilloscope (with the beam moving clockwise), which is exactly what we would expect.

LCD	details	of	some	points	while	plotting	semi-	circles
	accuito	U I	JUILLE	POINTS	******	provening	NOTIN	

00 - 10cm -10,00	60 ■ 40cm -20,35	140 4 45cm 35,29
30 ■ 10cm -08,05	75 4 0cm -10,39	150 5 45cm 40,22
60■ 10cm -05,09	90 = 40cm 00,40	160 5 45cm 43,15
90 - 10cm 00,10	105 5 40cm 11,39	170 5 45cm 45,08
120 - 10cm 05,09	120 4 40cm 20,35	180 5 45cm 45,00
150 - 10cm 09,05	135 5 40cm 29,28	
180 - 10cm 10,00	150 - 40cm 35,20	
	165 5 40cm 39,10	00 ■ 60cm -60,00
	180 5 40cm 40,00	45 ■ 60cm -42,42
00 ■ 25cm -25,00		90 5 60cm 00,60
20 ■ 25cm -23,08		135 5 60cm 43,42
40 ■ 25cm -19,16	00 ■ 45cm -45,00	180 5 60cm 60,00
60 ■ 25cm -12,22	10 ■ 45cm -44,08	
80 ■ 25cm -04,25	20 ■ 45cm -42,15	
100 2 25cm 05,25	30 ■ 45cm -38,22	00 ■ 55cm -55,00
120 2 25cm 13,22	40 ■ 45cm -34,29	18 ■ 55cm -52,17
140 2 25cm 20,16	50 ■ 45cm -28,34	36 ■ 55cm -44,32
160 5 25cm 24,08	60 ■ 45cm -22,39	54 ■ 55cm -32,44
180 2 25cm 25,00	70 = 45cm -15,42	72 ■ 55cm -16,52
	80 ■ 45cm -07,44	90 5 55cm 00,55
	90 5 45cm 00,45	108 5 55cm 18,52
00 ■ 40cm -40,00	100 5 45cm 08,44	126 5 5cm 33,44
15 ■ 40cm -38,10	110 5 45cm 16,42	144 5 55cm 45,32
30 ■ 40cm -34,20	120 5 45cm 23,39	162 ■ 55cm 53,17
45 ■ 40cm -28,28	130 - 45cm 30,34	180 5 55cm 55,00

```
(■ = Degree Sign in LCD font)
```

System Testing

Each of the modes were put together first and test individually.

Radar Mode

This was a very simple test. Some tubes were placed in front of the sensor and the program was run to see if the oscilloscope gave the proper positions of the objects and whether it gave just one dot on the scope for one object. I realise the specifications required the radar mode to pick up at least 16 targets in the sweep-able angular range, but unfortunately we were provided with just one tube to test our programs on. I used my highly persuasive skills to borrow some others from other benches and improvised by using some smarties tubes. At a far enough distance, the radar picked up ten distinct objects. Since the detection of an object requires there to be a black space between them, and a sweep-able area of 90 degrees at 60cm, this gives us a circumference of 94cm. The side of the tube visible to the sensor is roughly 3cm (i.e. half is circumference). This would allow the detection of at least 20 objects, provided there is enough blank space between two objects placed next to each other. The sounds made by the speaker were quite decent and it corresponded to the distance between the object and the sensor.

Improvising using Smarties tubes. This would no doubt make a very good Smarties commercial.

The pictures below show the positioning of three objects in radar mode and how they appeared on the oscilloscope and LCD display during a sweep

Tracker Mode

The first part of the tracker test was simply to check whether the motor properly swept until it locked on to an object. Once that proved successful, the actual tracker bit was tested and it seemed to follow the object around quite well (provided it moved slow enough at around 2cm/s). I then moved the object out of range several times and checked whether it made the tracker loop back to the zero degree position and start seeking for the object again. I had one problem though. I had initially forgot to put in checks for the extreme angles 0 and 180 degrees, so everything just went haywire when the object was around those position since then the new reload values were no longer on the reload tables, so a very strange input would be put into the servo motor. I made it so that there were checks at 0 and 180 degrees such that in those instances the tracker would not check to the left or right respectively. The sound effects produced were quite satisfactory as well.

Target placed in front of sensor in tracker mode

Oscilloscope showing position of target

LCD displaying co-ordinates of target

Profiler Mode

The profiler was tested with differently shaped objects placed in front of the sensor and then checking what kind of image was formed on the oscilloscope. The distances on the LCD display also came out more or less right. Many different shapes were used to check the image formed on the screen and the shapes more or less coincided, as well as can be expected from our particular resolution and our sensor. The speaker makes distinct sounds at distinct distances, so the sound gave the listener a rough idea of the shape of the object. For example, a concave object would

give a more or less same sound through out but a straight object would start off with a high frequency, then get lower and then get higher again.

The following are some pictures of objects placed on the sensor and the profile shown on the oscilloscope after a sweep.

Full System Testing

All this required was to test whether all the modes worked when put in the same program file and whether the menu itself worked. One major problem I faced was the overlapping of labels, which often meant that even after I got rid of all duplicate label names, I had forgotten to change the jump instructions accordingly, so often the tracker looped into the radar and vice versa until I fixed all this. The system seemed to respond fine to all keypad entries, taking it to the appropriate mode for keys 1-3 or back to the main menu for other keys.

Obviously really proud of the simplest hardware design in the lab

TECHNICAL SPECIFICATIONS

InfraRed Sensor			
Operational Range	10-60cm		
Distance Accuracy	10-30cm: Max Error +/-0cm, Standard Deviation: 0.00		
	30-40cm: Max Error +/-1cm, Standard Deviation: 0.41		
	40-50cm: Max Error +/-2cm, Standard Deviation: 0.81		
	50-60cm: Max Error +/-4cm, Standard Deviation: 1.19		
Servo-Motor			
Angle of sweep	0-180 degrees		
Speed of rotation	0.20 seconds/degree		
Radar Mode			
Angle of sweep	45 to 135 degrees (every 1 degree)		
Maximum Objects Detectable	20		
Average Time for Full Sweep	25 seconds		
Radar Range	10-60cm		
Tracker Mode			
Angle of sweep	0 to 180 degrees (every 3 degrees)		
Tracker Accuracy	+/-3 degrees		
Seeker Range	10-30cm		
Tracker Range	10-30cm		
Maximum Speed Track-able	2cm/s		
Profiler Mode			
Angle of sweep	45 to 135 degrees (every 1 degree)		
Average Time for Full Sweep	30 seconds		
Profiler Range	10-60cm		
Oscilloscope Display			
Resolution	128*64		
X-coordinates	128 discrete values (1 pixel per cm)		
Y-coordinates	64 discrete values (1 pixel per cm)		
LCD Display			
Display size	16 characters per line * 2 lines		
Accuracy of numbers displayed	Dependent on IR sensor reading		
	Values correct to whole numbers (0 decimal places)		

Costing							
Component Qty		Purpose	Unit Price £	Total Price £			
Z80 CPU SBC	1	The SBC Board with the Z80 Processor,	100.00	100.00			
Board		RAM chips, LCD, Keypad etc.					
Servo Motor	1	Rotates IR sensor	7.50	7.50			
IR Sensor	1	Infra-red sensor to detect objects	9.00	9.00			
8 ohm Speaker	1	To produce required sound effects	3.38	3.38			
DAC0832LCN	2	1 – Perform D/A conversion for X axis	2.74	5.48			
D/A Converter		2 – Perform D/A conversion for Y axis					
LF356N	2	To amplify analogue signals for each axis	0.63	1.26			
Op Amp		on each D/A converter					
ADC0804LCN	1	To convert analogue voltage read by the IR	2.70	5.40			
A/D Converter		sensor to be read					
Capacitors	5	For speaker, ADC, Z-input, smoothing	0.11	0.55			
		opamps outputs					
Resistors	6	For providing reference voltages to ADC	0.05	0.30			
		and DACs					
Wires, misc.		For connecting components	1.00	1.00			
			TOTAL £	133.87			

(Please note these costs are for putting together one unit of the system, however if it were to be mass-produced then the costs per unit would be slightly less)
LIMITATIONS AND FUTURE IMPROVEMENTS

As far as limitations go, the most apparent one would probably be the resolution of our oscilloscope display i.e. 128*64. The most obvious reason for doing that was to save time (and a chip) so that we could only use the ports for I/O. Most other teams were using a 256*256 resolution. However I believe this is unnecessary because of the inaccuracy of the IR sensor. An improvement I would suggest is the use of a more accurate/sensitive IR sensor such that distances would be calculated with greater accuracy and then a higher resolution could be used to give more near to exact positions of objects on the oscilloscope. On top of that, if a 16-bit ADC were used to encode the IR-sensor data, the distance measurements would have greater detail (perhaps in millimetres).

One problem with sharing the same ports for timers and the y-axis meant that while the timers were running it was not possible to change the position of points on the oscilloscope screen. This meant that our screen was slightly more flickering than that of other teams. This is one reason why we really should have implemented a discrete I/O scheme, leaving the timer bits separate from anything else.

A better IR sensor would also increase the operational range of all our modes.

At the moment, the radar mode only shows objects as it sweeps but does not store the locations of the objects. It does however give a nice effect of an object popping up on the oscilloscope and then fading away as the next object is detected. But I suppose, if I stored the positions of all objects in memory and then displayed the previously scanned objects in the same sweep while scanning, it would look much more sophisticated and give more information.

Among other things, I would have also preferred to have a faster servo-motor, which would mean faster sweeps for the radar and profiler modes, and the tracker mode would also be able to track faster moving objects.

I would also have liked to allow the user to manually enter angle of sweeps, acceptable distances ranges etc. for each of the modes using the keypad.

Using some fancy vector graphics, it would have been nice to show the angle, distance etc. on the oscilloscope display itself as graphics. All this would require is to have bitmap images of numbers and then showing them on the screen starting at a particular points of it.

Most of these suggested improvements are base on what I saw done by other teams doing the MCP course. Despite all the limitations of our system, I think I can safely say that ours is probably the simplest and cheapest hardware solution and I do feel rather smug about what I have put together.

APPENDIX A – THE CODE

jp main

.space 29

vector_table: # setting up vector table for servicing interrupts .int 0x0000 # interrupt 0 unused .int keypad_int # interrupt 1 generated by keypad key press .int servo_timer_toggle # interrupt 2 generated by timer0 (servo timer) .int speaker_timer_toggle # interrupt 3 generated by timer1 (speaker timer) lcd out = 0xB9# output for lcd screen in ASCII keypad in = 0xB4# input from keypad ADC = 0xB0# port A connected to ADC X = 0xB1# port B connected to Z and X inputs Y = 0xB2# port C connected to servo, speaker and Y inputs # command status register CSR = 0xB3# high reload register for timer 0 (controlling servo) rr high0 = 0x0F# low reload register for timer 0 (controlling servo) $rr_low0 = 0x0E$ # high reload register for timer 1 (controlling speaker) $rr_high1 = 0x17$ # low reload register for timer 1 (controlling speaker) $rr_low1 = 0x16$ TCR = 0x10# timer control register - used to enable timers 0 & 1 TDR0 = 0x0C# lower byte of timer data register for timer 0 TDR1 = 0x14# lower byte of timer data register for timer 1 IVLR = 0x33# interrupt vector low register ITCR = 0x34# interrupt/trap control register distance = $0 \times FC10$ # stores current distance read radius = 0xFC15# radius in polar co-ordinates to be passed to procedure get_coords as parameter # stores current angle of servo or point being plotted angle = $0 \times FC11$ tangle = 0xFC12# temporarily holds angle for conversion number = $0 \times FC17$ # number in binary to be passed to procedure display_bin_to_dec as parameter $x_coord = 0xFC18$ # holds x-coordinate of point converted from polar to cartesian by get_coords $y_coord = 0xFC19$ # holds y-coordinate of point converted from polar to cartesian by get_coords mode = 0xFC1A # stores current mode (1=Radar, 2=Tracker, 3=Profiler) midangle = 0xFC35# stores middle angle in tracker mode before checking left or right middistance = 0xFC80# stores distance at the middle angle in tracker mode objang = 0xFC26 # stores angle at which centre of last object in radar mode was detected # stores distance at which centre of last object in radar objdis = 0xFC25mode was detected ########### main: call init_port # initialise ports such that A=input, B=output, C=output

call init_vector_table # initialise vector table for interrupts

ld a, 0x00 # sets mode to 0 (menu) initially
ld (mode), a

main_menu:

call clear # clear lcd screen call display_menu # lcd displays message showing which key to press for which mode

menu:

ld a, (mode) # loop around if mode=0 cp 0x00 jp z, menu ld a, (mode) # run radar-mode if mode=1 cp 0x01 jp z, radar ld a, (mode) # run tracker-mode if mode=2 cp 0x02 jp z, tracker ld a, (mode) # run profiler-mode if mode=3 cp 0x03 jp z, profiler

jp menu

radar:

```
call init_angle45
call enable_servo_timer # set servo to start sweep at 45degrees
# run servo timer starting rotation
call clear # clear lcd
call display_rotating # lcd displays message saying servo rotating
call delay_servo_full # lcd displays message saying servo rotate to 45degrees
ld a, 0x40 # initialising last object detected at 0x40
(infinty)
ld (objdis), a
radar_loop:
```

start of radar-mode

```
ld a, (mode)
                             # if mode changed return to main menu
     cp 0x01
      jp nz, main_menu
     call clear
                              # clear lcd
     call get_distance  # calculate current distance and put it in
(distance)
      call display_radar_mode  # lcd displays message indicating radar mode
     call display_angle
                             # lcd displays angle of servo
     ld a, (distance)
                       # if distance > 60 then there is no object detected
      cp 0x3C
      jp z, checkblank
      ld b, a
                               # b = current distance
     ld a, (objdis)
                               # a = previous central distance of current object
                               # prev distance - current distance
     cp b
      jp c, checkblank
```

ld a, (distance) # if current distance < previous distance</pre> ld (objdis), a # set new object distance and angle as current values ld a, (angle) ld (objang), a jp next_angle checkblank: # if there is a blank space means end of object ld a, (objdis) # if there was no previous object (object distance > 60) then rotate to next angle cp 0x3C jp nc, next_angle ld a, (angle) # temporarily stores angle in stack since calculations affect it push af ld a, (objang) # get cartesian coordinates for (objang, objdis) ld (angle), a ld a, (objdis) ld (radius), a call get_coords call clear call display_object # lcd displays message saying objected detected call display_angle_distance # display objang, objdis, cartesian coordinates on LCD call plotoutline # plot outline on oscilloscope showing sweep-able region call plot_point # plots point using cartesian co-ordinates of object detected call beam_on # leave oscilloscope beam on call make_sound # use speaker to make sound indicating detection of object call plotoutline # plot outline on oscilloscope showing sweep-able region # plots point using cartesian co-ordinates of object call plot_point detected call beam_on # leave oscilloscope beam on pop af # restore value of angle ld (angle), a ld a, 0x40 # set object central distance as 64 (infinity), i.e. no object being detected ld (objdis), a ld a, (angle) # if angle >= 135 re-run radar (rotate back to 45 and sweep again) cp 0x87 jp nc, radar

```
next_angle:
```

```
call increase_angle # if angle < 135, increment angle and then rotate servo to
that angle
    call rotate_to_angle</pre>
```

```
jp radar_loop
```

tracker:

main module for tracker mode

call clear call beam off seeker: call init_angle0 # set servo to start sweep at Odegrees call enable_servo_timer # run servo timer starting rotation call clear # clear lcd call display_rotating # lcd displays message saying servo rotating call delay_servo_full # allow servo enough delay to rotate to 45degrees seeker_loop: ld a, (mode) cp 0x02 jp nz, main_menu call clear # clear lcd screen # calculate current distance and put it in call get_distance (distance) call display_tracker_seeking # lcd displays message indicating tracker seeking call display_angle_distance # display current angle and distance read call plot_outline call get_coords call plot_point # plot current reading on oscilloscope call beam_on ld a, (distance) # if object located at distance<30 then go to trackingmode cp 0x1E jp c, tracker_start change_sangle: #check if angle is >= 180 ld a, (angle) cp 0xB2 jp c, next_sangle # if angle >-180 then restart seeker from 0 degrees jp seeker next_sangle:

```
call increase_angle3  # increase angle by 3
```

call rotate_to_angle # run timer for enough time to allow rotation jp seeker_loop tracker_start: ld a, (angle) # store current angle and distance as middle angle and distance ld (midangle), a call get_distance ld a, (distance) ld (middistance), a right check: ld a, (mode) # check if mode has been changed via keypad cp 0x02 jp nz, main_menu ld a, (midangle) # rotate to current angle ld (angle), a call rotate_to_angle call get_distance # set current distance as mid distance ld a, (distance) ld (middistance), a # if mid distance >= 64 it means object has moved ld a, (distance) out of range, so start seeking again cp 0x3F jp nc, tracker call clear # clears lcd call display_tracker_locked # display message saying tracker locked call display_angle_distance # display angle, distance, cartesian coordinates call plotoutline # show sweep-able region on oscilloscope call get_coords # get oscilloscope co-ordinates for midangle,middistance # plot point showing current angle, distance on call plot_point oscilloscope midangle, middistance oscilloscope right: ld a, (midangle) # if angle >= 178 do not check right cp 0xB0 jp nc, left add a, 0x03# angle = midangle + 3 ld (angle), a call rotate_to_angle # enable timer and allow servo time to rotate to midangle+3 call get_distance # read current distance into (distance) ld a, (middistance) ld b, a # b = middistance

a = rightdistance ld a, (distance) # a-b = rightdis-middis cp b jp nc, left # if rightdis>=middis then object has not moved to # if rightdis<middis then object moved to right, set</pre> ld a, (angle) midangle to current angle and so check to the right again ld (midangle), a jp right_check left: # checking if object moved to left ld a, (midangle) # if angle < 3 do not check left</pre> cp 0x03 jp c, right_check sub 0x03 # angle = midangle - 3 ld (angle), a # enable timer, allow servo time to rotate to call rotate_to_angle midangle-3 call get_distance # read current distance into (distance) ld a, (middistance) ld b, a # b = middistance ld a, (distance) # a = leftdistance# a-b = leftdis-middis cp b # if leftdis>=middis then object has not moved to jp nc, right_check left, so check right ld a, (angle) # if leftdis<leftdis then object moved to right, set</pre> midangle to current angle and so check to the right again ld (midangle), a left_check: ld a, (mode) # if mode changed via keypad then return to main menu cp 0x02 jp nz, main_menu call clear # clears lcd call display_tracker_locked # display message saying tracker locked call display_angle_distance # display angle, distance, cartesian coordinates call plotoutline # show sweep-able region on oscilloscope call get coords # get oscilloscope co-ordinates for call get_coords # get oscilloscope co-ordinates for midangle, middistance # plot point showing current angle, distance on call plot_point oscilloscope call make_sound # make sound indicating distance from sensor call make_sound call plotoutline call get coords # show sweep-able region on oscilloscope call get_coords # get oscilloscope co-ordinates for midangle, middistance call plot_point # plot point showing current angle, distance on oscilloscope jp left

profiler:

call init_angle45	#	set	servo	to	start	sweep	at	45degrees
call enable_servo_timer	#	run	servo	tin	ner sta	arting	rot	tation

call clear # clear lcd call display_rotating # lcd displays message saying servo rotating call delay_servo_full # allow servo enough delay to rotate to 45degrees ld a, 0x40 # initialising last object detected at 0x40 (infinty) ld (objdis), a profiler_loop: ld a, (mode) # if mode changed return to main menu cp 0x03 jp nz, main_menu call clear # clear lcd call get distance # calculate current distance and put it in (distance) call display_profiler_mode# lcd displays message indicating profiler mode ld a, (distance) ld (radius), a call display_angle_distance # display angle, distance, cartesian coordinates on LCD ########### Storing Profile ################## Stores points in cartesian coordinates for each angle if something is detected. X-coordinates for each angle stored in 0xFA00+angle and Y-coordinates in 0xF900+angle ld (distance), a # if nothing detected (distance>60) no point stored cp 0x3C jp nc, noppoint ld a, (angle) # Starting at location FA00 and using angle as offset store x-coordinate for current angle ld l, a ld h, OxFA ld a, (x_coord) ld (hl), a # Starting at location F900 and using angle as offset ld a, (angle) store y-coordinate for current angle ld l, a ld h, 0xF9 ld a, (y_coord) ld (hl), a call plot_outline # plot outline indicating sweep-able region call plot_point # plot current point on screen
call make_sound # make sound indicating the dis # make sound indicating the distance read jp change_angle noppoint: # if distance>64, store the point as 0,0 which is not plotted by show_profile ld a, (angle) ld l, a ld h, OxFA ld a, 0x00 ld (hl), a

ld a, (angle) ld l, a ld h, 0xF9 ld a, 0x00 ld (hl), a

##########

change_pangle:

next_pangle:

call increase_angle # if angle < 135, increment angle and then rotate servo to that angle call rotate_to_angle

jp profiler_loop

keypad_int: # interrupt routine if key on keypad pressed, changes mode according to key pressed in a, (keypad_in) ld a, 0x00 # initially set mode as 0 (menu-mode) ld (mode), a in a, (keypad_in) # read data from keypad indicating which key pressed # converts keypad data into integers (1 for 1 pressed, 2 cpl for 2 pressed, 3 for 3 pressed) sub 0x0F cp 0x00 # if key pressed is between 1 and 3, set mode to key, otherwise leave mode as 1 jp z, end_keypad_int cp 0x04 jp nc, end_keypad_int ld (mode), a end_keypad_int:

ei reti

```
ld a, 0x00
out0 (rr_high1), a
in a, (ADC)
or 0x10
out0 (rr_low1), a
ei
call enable_speaker_timer # speaker enabled
call delay_speaker # give speaker enough time to make an audible sound
di
call disable_speaker_timer# speaker disabled
```

ret

delay_speaker: # delay procedure to give speaker enough time to make an audible sound

push bc ld bc, 0x0600# do 600h nops delay_speaker_loop: nop dec bc ld a, 0x00 cp b jp nz, delay_speaker_loop pop bc ret

servo_timer_toggle: # when servo clock interrupt occurs this toggles the servo-input
to produce required wave

```
cpl
      ld e, a
                         # -de found in 1's complement form
      push hl
      ld h, 0x06
      ld 1, 0x01
      add hl, de
                          # next pulse should have period 600h-de, since -de is in
1C form 1 is added, so 601h-de performed
      ld d, h
      ld e, l
      pop hl
      out0 (rr_low0), e # new reload values put in to generate wave
      out0 (rr_high0), d
      ei
reti
speaker_timer_toggle:
                         # when speaker clock interrupt occurs this toggles the
speaker-input to produce required wave
      inO a, (TCR) # required to be read to put down interrupt
      in0 a, (TDR1)
      in a, (Y)
                          # toggle speaker input to produce square wave
      xor 0x40
      out (Y), a
reti
                          # turns oscilloscope beam off by setting portB bit7 to 1
beam_off:
leaving other bits unchanged
      in a, (X)
      or 0x80
      out (X), a
ret
beam_on:
                          # turns oscilloscope beam on by setting portB bit7 to 0
leaving other bits unchanged
      in a, (X)
      and 0x7F
      out (X), a
ret.
plotoutline: # plots outline indicating extreme x & y co-ordinates and sweep-able
region
      ld a, 0x00
                          # plot bottom leftmost point
      ld (x_coord), a
      ld (y_coord), a
      call plot_point
```

```
ld a, 0x7F  # plot top rightmost point
ld (x_coord), a
ld a, 0x3F
ld (y_coord), a
call plot_point
```

ld a, 0x00 # plots top leftmost point ld (x_coord), a ld a, 0x3F ld (y_coord), a call plot_point ld a, 0x7F # plot bottom rightmost point ld (x_coord), a ld a, 0x00 ld (y_coord), a call plot_point ld a, (angle) # temporarily stores current angle in tangle since angle is used by procedures ld (tangle), a ld a, 0x00 ld (radius), a ld a, 0x2B ld (angle), a # two lines at 45d and 135d are drawn to indicate sweepld a, (mode) able areas for profiler and radar mode, but these are skipped for the tracker cp 0x02 jp z, pointer ld b, 0x00 ld c, 0x40 # draws a line at 45degrees (grad=-1) from (0,3F) to downline: (40, 0)ld a, b cpl # turn beam off or 0x80 out (X), a ld a, c cpl and 0x3F # make sure servo and speaker bit unaffected out (Y), a call beam_on call beam_off inc b dec c ld a, c cp 0x00 jp nz, downline # draws a line at 135degrees (grad=1) from (40,0) to upline: (7F,3F) ld a, b cpl # turn beam off or 0x80 out (X), a ld a, c cpl and 0x3F# make sure servo and speaker bit unaffected out (Y), a call beam_on nop

nop call beam_off inc b inc c ld a, c cp 0x3F jp nz, upline call beam_off pointer: # draws a line of radius 10 at angle given ld a, 0x01 # initialise radius at 1 ld (radius), a linept: ld a, (radius) call get_coords # get oscilloscope co-ordinates for (angle, radius) call plot_point # plot point on oscilloscope ld a, (radius) inc a ld (radius), a # keep plotting points at (angle, radius) until radius > 10 cp 0x0B jp nz, linept ret # displays profile of object scanned by profiler show_profile: call plotoutline # plots outline showing extreme points and sweep-able region ld a, 0x2C # start with angle at 45 ld (angle), a nextpoint: # get x-coordinate for point at angle using FA00 as start address and angle as offset ld a, (angle) ld l, a ld h, 0xFA ld a, (hl) ld (x_coord), a # get y-coordinate for point at angle using F900 as start address and angle as offset ld a, (angle) ld l, a ld h, 0xF9 ld a, (hl) ld (y_coord), a ld b, a ld a, (x_coord) add a, b $# a = x_coord + y_coord$ cp 0x00 jp z, endplot

if x-coord and y-coord are both not 0 (i.e. x-coord + y-coord not = 0) then plot the point on oscilloscope, otherwise simply go to next angle

call plot_point
endplot:
ld a, (angle)# angle = angle + 1
inc a
ld (angle), a

ld a, (angle)# if angle < 136 then show point for next angle, otherwise entire
profile shown so exit
 sub 0x88</pre>

jp c, nextpoint

ret

rotate_to_angle: # loads timer0 with appropriate values for angle given and runs it for long enough for a 1-3 degree rotation

ld hl, reload_high_table # load high register value into timer for angle from the reload_high_table using angle as offset ld b, 0x00

ld a, (angle)
ld c, a
add hl, bc
ld a, (hl)
ld d, a
out0 (rr_high0), a

#enables interrupts that were previously disabled by default

```
in0 a, (ITCR)
or 0x04
out0 (ITCR), a
in0 a, (IVLR)
or 0x04
out0 (IVLR), a
```

ret

init_port:

```
#initalise ports, A=input, B=output, C=output
ld a, 0x90
out0 (CSR), a
```

```
#initialising portC such that all bits are zero, i.e timer bits are 0 and
oscilloscope Y-input is 000000
    ld a, 0x00
    out (Y), a
```

ret

```
ld (angle), a
ld d, 0x01  # angle = 45
ld e, 0x50
out0 (rr_high0), d
out0 (rr_low0), e
```

```
ret
```

ld (angle), a
ld d, 0x00 # angle = 0
ld e, 0xD0
out0 (rr_high0), d
out0 (rr_low0), e

ret

enable_servo_timer: # turns timer0 (which is the servo motor input) on
 ei

make sure pulse starts on a low or else we would have an inverted wave to what we desire in a, (Y) and 0x7F

out (Y), a # turn timer0 on in0 a, (TCR) or 0x11 out0 (TCR), a ret disable_servo_timer: # turns timer0 (which is the servo motor input) off di # turn timer0 off in0 a, (TCR) and OxEE out0 (TCR), a ret enable_speaker_timer: # turns timer1 (which is the speaker input) on in0 a, (TCR) or 0x22 out0 (TCR), a ret. # turns timer1 (which is the speaker output) on disable_speaker_timer: in0 a, (TCR) and 0xDD out0 (TCR), a ret # gives servo enough delay for a full 180 or 90 degree delay_servo_full: rotation push bc ld bc, 0xFFFF full_delay_loop: # do FFFFh nop's nop dec bc ld a, 0x00 cp b jp nz, full_delay_loop pop bc ret get_distance: # reads ADC value, converts it to distance ld 1, 0x00 ld h, 0x00 ld b, 0x00 in a, (ADC) # reads ADC data, adds it to hl ld c, a cp 0x28 # if ADC value < 0x28 (distance >= 64) it means nothing was detected jp c, nothingthere add hl, bc in a, (ADC) # reads ADC data, adds it to hl ld c, a cp 0x28 jp c, nothingthere add hl, bc

in a, (ADC) # reads ADC data, adds it to hl ld c, a cp 0x28 # if ADC value < 0x28 (distance >= 64) it means nothing was detected jp c, nothingthere add hl, bc in a, (ADC) # reads ADC data, adds it to hl ld c, a cp 0x28 # if ADC value < 0x28 (distance >= 64) it means nothing was detected jp c, nothingthere add hl, bc # hl contains sum of four ADC readings # using shifts such that a = hl/4, i.e. a = 2 LSB of h and 6 MSB of l =average ADC value srl l srl l sla h sla h sla h sla h sla h ld a, l or h jp endget # if nothing detected once set average ADC value to 0x00 nothingthere: ld a, 0x00 # use distance_table and average ADC value as offset to endget: get distance and put it in (distance) ld b, 0x00 ld c, a ld hl, distance_table add hl, bc ld a, (hl) ld (distance), a ret display_angle: # displays current angle on lcd ld a, (angle) ld (number), a # displays angle in decimal call display_bin_to_dec ld a, 0xDF # displays degree sign out (lcd_out), a call plotoutline ret display_angle_distance: # displays angle, distance, cartesian co-ordinates call display_angle # displays angle

ld a, distance # if distance > 64 then do not display anything else cp 0x40 jp nc, endofdisplay ld a, 0x14 # displays space out (lcd_out), a call plotoutline ld a, (distance) # displays distance in decimal ld (number), a call display_bin_to_dec ld a, 0x63 # displays "cm " out (lcd_out), a call delay_keypad ld a, 0x6D out (lcd_out), a call delay_keypad ld a, 0x14 out (lcd_out), a call delay_keypad ld a, 0x14 out (lcd_out), a call delay_keypad call get_coords ld a, (x_coord) cp 0x40 jp c, xpos # if x_coord < 64 then display 64 - x_coord (negative)</pre> xneg: # display "-" ld a, 0x2D out (lcd_out), a call delay_keypad ld a, (x_coord) cpl inc a $\# a = -x_coord$ (2C) add 0x40 # a = -x coord + 64jp showx # if x_coord > 64 then display x_coord - 64 xpos: ld a, (x_coord) sub 0x40 # a = x_coord - 64 showx: ld (number), a # display cartesian x_coord call display_bin_to_dec ld a, 0x2C # display "," out (lcd_out), a call delay_keypad # display y-coordinate showy: ld a, (y_coord) ld (number), a

```
call display_bin_to_dec
call delay_keypad
```

```
endofdisplay:
```

ret

```
decrease_angle3:
```

```
ld a, (angle)  # angle = angle - 3
sub 0x03
ld (angle), a
ret
```

```
increase_angle:
```

```
ld a, (angle)  # angle = angle + 1
inc a
ld (angle), a
ret
```

```
decrease_angle:
```

```
ld a, (angle)  # angle = angle - 1
dec a
ld (angle), a
ret
```

```
ld bc, 0x00FF
delay_keypad_loop: # do FFh no-ops
    nop
    dec bc
    ld a, 0x00
    cp b
    jp nz, delay_keypad_loop
    pop bc
```

ret

```
ld a, 0x00
ld h, a
ld l, a
# uses angle as offset to retrieve cosine value from cosine_table
ld a, (angle)
ld c, a
```

ld hl, cosine_table ld b, 0x00 add hl, bc ld a, (hl) ld h, a ld a, (radius) ld l, a mlt hl # h = cosine(angle)*radius (number part), l = cosine(angle)*radius (fraction part) ld a, (angle) # check if angle > 90 cp 0x5A #90 jp nc, nonneg ld a, h # if angle < 90 x_coord = 64-h cpl inc a ld h, a # if angle >= 90 x_coord = 64+h nonneg: ld a, h add a, 0x40 ld (x_coord), a # uses angle as offset to retrieve cosine value from sine_table ld a, (angle) ld c, a ld hl, sine_table ld b, 0x00 add hl, bc ld a, (hl) ld h, a ld a, (radius) ld l, a mlt hl # h = sine(angle)*radius (number part), l = sine(angle)*radius (fraction part) ld a, h ld (y_coord), a ret plot_point: # plots point on oscilloscope given by co-ordinates x_coord and y_coord # sets lower 7 bits of portB (oscilloscope x-input) as ld a, (x_coord) x_coord and 0x7F ld h, a in a, (X) and 0x80 # set bit7 (Z-input) to 1 (turn beam off) or h out (X), a ld a, (y_coord) # sets lower 6 bits of portC (oscilloscope y-input) as y_coord # make sure bit6 and bit 7 set to 0 and 0x3F ld h, a

```
in a, (Y)
      and 0xC0
                         # make sure bit6 and bit7 (speaker and servo input)
unaffected
      or h
      and 0xBF
      out (Y), a
      call beam_on
                          # turn beam on for short time and then turn it off
      nop
      nop
      nop
      nop
      nop
      call beam_off
ret
display_bin_to_dec: # display binary number in decimal on lcd
      ld h, 0x00
      ld a, (number)
start100:
                           \# keep subtracting 100 from a and incrementing h until a <
0
      sub 0x64
      jp c, end100
      inc h
      ld (number), a
      jp start100
end100:
                          # h stores hundreds digit
      ld a, h
      cp 0x00
      jp z, init10
                           # display h as number (in ASCII, 0 is at 30, so e.g. 1 is
      ld a, h
at 31) on lcd
      add a, 0x30
      out (lcd_out), a
      call plotoutline
init10:
      ld a, (number)
      ld h, 0x00
start10:
                           # keep subtracting 10 from a and incrementing h until a <</pre>
0
      sub 0x0A
      jp c, end10
      inc h
      ld (number), a
      jp start10
end10:
      ld a, h
                          # h stores tens digit
      add a, 0x30
                         # display h as number (in ASCII, 0 is at 30, so e.g. 1 is
      out (lcd_out), a
at 31) on lcd
      call delay_keypad
      ld a, (number)
```

```
ld h, a
      ld a, h
                          # h stores units digit
      add a, 0x30
                          # display h as number (in ASCII, 0 is at 30, so e.g. 1 is
at 31) on lcd
      out (lcd_out), a
      call delay_keypad
ret
display_character: # displays ASCII character put in reg a onto lcd screen
      out (lcd_out), a
      call delay_keypad
      ld a, 0x20
ret
display_menu:
      # display 'SELECT MODE' and go to next line
      ld a, 0x53
      call display_character
      ld a, 0x45
      call display_character
      ld a, 0x4C
      call display_character
      ld a, 0x45
      call display_character
      ld a, 0x43
      call display_character
      ld a, 0x54
      call display_character
      ld a, 0x20
      call display_character
      ld a, 0x4D
      call display_character
      ld a, 0x4F
      call display_character
      ld a, 0x44
      call display_character
      ld a, 0x45
      call display_character
      ld a, 0x20
      call display_character
      call display_character
```

call display_character # display '1RAD 2TRK 3PRF' ld a, 0x31 call display_character ld a, 0x52 call display_character ld a, 0x41 call display_character ld a, 0x44 call display_character ld a, 0x20 call display_character ld a, 0x32 call display_character ld a, 0x54 call display_character ld a, 0x52 call display_character ld a, 0x4B call display_character ld a, 0x20 call display_character ld a, 0x33 call display_character ld a, 0x50 call display_character ld a, 0x52 call display_character

ld a, 0x46 call display_character

ret

display_radar_mode: # display 'RADAR MODE' and go to next line ld a, 0x52 call display_character ld a, 0x41 call display_character ld a, 0x44 call display_character ld a, 0x41 call display_character ld a, 0x52 call display_character ld a, 0x20 call display_character ld a, 0x4D call display_character ld a, 0x4F call display_character ld a, 0x44 call display_character ld a, 0x45 call display_character ld a, 0x20 call display_character call display_character call display_character call display_character call display_character call display character call display_character call display_character

call display_character call display_character call display_character call display_character call display_character call display_character

ret

display_tracker_seeking:

display 'TRACKER-SEEKING' and go to next line ld a, 0x54 call display_character ld a, 0x52 call display_character ld a, 0x41 call display_character ld a, 0x43 call display_character ld a, 0x4B call display_character ld a, 0x45 call display_character ld a, 0x52 call display_character ld a, 0x2D call display_character ld a, 0x53 call display_character ld a, 0x45 call display_character ld a, 0x45 call display_character ld a, 0x4B call display_character ld a, 0x49 call display_character ld a, 0x4E call display_character ld a, 0x47 call display_character ld a, 0x20 call display_character call display_character call display_character call display_character

```
call display_character
```

ret

display_tracker_locked:

display 'TRACKER-LOCKED' and go to next line ld a, 0x54 call display_character ld a, 0x52 call display_character ld a, 0x41 call display_character ld a, 0x43 call display_character ld a, 0x4B call display_character ld a, 0x45 call display_character ld a, 0x52 call display_character ld a, 0x2D call display_character ld a, 0x4C call display_character ld a, 0x4F call display_character ld a, 0x43 call display_character ld a, 0x4B call display_character

```
ld a, 0x45
call display_character
ld a, 0x44
call display_character
ld a, 0x20
call display_character
```

ret

display_profiler_mode:

display 'PROFILER MODE' and go to next line ld a, 0x50 call display_character ld a, 0x52 call display_character ld a, 0x4F call display_character ld a, 0x46 call display_character ld a, 0x49 call display_character ld a, 0x4C call display_character ld a, 0x45 call display_character ld a, 0x52 call display_character

```
ld a, 0x20
call display_character
ld a, 0x4D
call display_character
ld a, 0x4F
call display_character
ld a, 0x44
call display_character
ld a, 0x45
call display_character
ld a, 0x20
call display_character
```

display_rotating:

ret

display 'ROTATING BACK' and go to next line ld a, 0x52 call display_character ld a, 0x4F call display_character ld a, 0x54 call display_character ld a, 0x41 call display_character

ld a, 0x54 call display_character

ld a, 0x49 call display_character ld a, 0x4E call display_character ld a, 0x47 call display_character ld a, 0x20 call display_character ld a, 0x42 call display_character ld a, 0x41 call display_character ld a, 0x43 call display_character ld a, 0x4B call display_character display_object: # display 'OBJECT DETECTED' and go to next line ld a, '0' call display_character ld a, 'B' call display_character ld a, 'J' call display_character ld a, 'E' call display_character ld a, 'C' call display_character ld a, 'T' call display_character ld a, ' ' call display_character ld a, 'D' call display_character ld a, 'E' call display_character ld a, 'T' call display_character ld a, 'E' call display_character

ret

```
ld a, 'C'
call display_character
ld a, 'T'
call display_character
ld a, 'E'
call display_character
ld a, 'D'
call display_character
ld a, ' '
call display_character
```

ret

table storing sine values for each angle, using angle as offset sine_table: maps angles to sine values in fixed point binary fractions (binary point before MSB) .byte 0x00, 0x04, 0x08, 0x0D, 0x11, 0x16, 0x1A, 0x1F, 0x23, 0x28, 0x2C, 0x30, 0x35, 0x39, 0x3D, 0x42 .byte 0x46, 0x4A, 0x4F, 0x53, 0x57, 0x5B, 0x5F, 0x64, 0x68, 0x6C, 0x70, 0x74, 0x78, 0x7C, 0x80, 0x83 .byte 0x87, 0x8B, 0x8F, 0x92, 0x96, 0x9A, 0x9D, 0xA1, 0xA4, 0xA7, 0xAB, 0xAE, 0xB1, 0xB5, 0xB8, 0xBB .byte 0xBE, 0xC1, 0xC4, 0xC6, 0xC9, 0xCC, 0xCF, 0xD1, 0xD4, 0xD6, 0xD9, 0xDB, 0xDD, OxDF, OxE2, OxE4 .byte 0xE6, 0xE8, 0xE9, 0xEB, 0xED, 0xEF, 0xF0, 0xF2, 0xF3, 0xF4, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB .byte 0xFC, 0xFC, 0xFD, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, OxFF, OxFF, OxFF .byte 0xFE, 0xFE, 0xFD, 0xFC, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF4, 0xF3, 0xF2, 0xF0, 0xEE .byte 0xED, 0xEB, 0xE9, 0xE7, 0xE6, 0xE4, 0xE2, 0xDF, 0xDD, 0xDB, 0xD9, 0xD6, 0xD4, 0xD1, 0xCF, 0xCC

.byte 0xC9, 0xC6, 0xC4, 0xC1, 0xBE, 0xBB, 0xB8, 0xB4, 0xB1, 0xAE, 0xAB, 0xA7, 0xA4, 0xA1, 0x9D, 0x99 .byte 0x96, 0x92, 0x8F, 0x8B, 0x87, 0x83, 0x7F, 0x7C, 0x78, 0x74, 0x70, 0x6C, 0x68, 0x63, 0x5F, 0x5B .byte 0x57, 0x53, 0x4F, 0x4A, 0x46, 0x42, 0x3D, 0x39, 0x35, 0x30, 0x2C, 0x27, 0x23, 0x1F, 0x1A, 0x16 .byte 0x11, 0x0D, 0x08, 0x04, 0x00

cosine_table: # table storing cosine values for each angle, using angle as offset maps angles to cosine values in fixed point binary fractions (binary point before MSB) .byte 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFE, 0xFD, 0xFC, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7 .byte 0xF6, 0xF4, 0xF3, 0xF2, 0xF0, 0xEE, 0xED, 0xEB, 0xE9, 0xE8, 0xE6, 0xE4, 0xE2, 0xDF, 0xDD, 0xDB .byte 0xD9, 0xD6, 0xD4, 0xD1, 0xCF, 0xCC, 0xC9, 0xC6, 0xC4, 0xC1, 0xBE, 0xBB, 0xB8, 0xB5, 0xB1, 0xAE .byte 0xAB, 0xA7, 0xA4, 0xA1, 0x9D, 0x9A, 0x96, 0x92, 0x8F, 0x8B, 0x87, 0x83, 0x7F, 0x7C, 0x78, 0x74 .byte 0x70, 0x6C, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4F, 0x4A, 0x46, 0x42, 0x3D, 0x39, 0x35, 0x30 .byte 0x2C, 0x28, 0x23, 0x1F, 0x1A, 0x16, 0x11, 0x0D, 0x08, 0x04, 0x00, 0x04, 0x08, 0x0D, 0x11, 0x16 .byte 0x1A, 0x1F, 0x23, 0x28, 0x2C, 0x30, 0x35, 0x39, 0x3D, 0x42, 0x46, 0x4A, 0x4F, 0x53, 0x57, 0x5B .byte 0x5F, 0x64, 0x68, 0x6C, 0x70, 0x74, 0x78, 0x7C, 0x80, 0x83, 0x87, 0x8B, 0x8F, 0x92, 0x96, 0x9A .byte 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAE, 0xB1, 0xB5, 0xB8, 0xBB, 0xBE, 0xC1, 0xC4, 0xC7, 0xC9, 0xCC .byte 0xCF, 0xD1, 0xD4, 0xD6, 0xD9, 0xDB, 0xDD, 0xDF, 0xE2, 0xE4, 0xE6, 0xE8, 0xE9, OxEB, OxED, OxEF .byte 0xF0, 0xF2, 0xF3, 0xF4, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFC, 0xFD, OxFE, OxFE, OxFF .byte 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

distance_table: # table storing distance values for each ADC reading, using ADC reading as offset maps ADC readings to distances (in cm) .byte 0x40, 0x40 .byte 0x40, 0x40 .byte 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x3F, 0x3E, 0x3D, 0x3C, 0x3B, 0x3A, 0x39, 0x38, 0x37, 0x36 .byte 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x2F, 0x2E, 0x2E, 0x2D, 0x2C, 0x2C, 0x2B, 0x2A, 0x2A, 0x28 .byte 0x27, 0x26, 0x25, 0x25, 0x24, 0x24, 0x23, 0x23, 0x22, 0x22, 0x21, 0x21, 0x20, 0x20, 0x1F, 0x1F .byte 0x1F, 0x1E, 0x1E, 0x1E, 0x1D, 0x1D, 0x1C, 0x1C, 0x1C, 0x1B, 0x1B, 0x1B, 0x1A, 0x1A, 0x19, 0x19 .byte 0x19, 0x18, 0x18, 0x18, 0x18, 0x17, 0x17, 0x17, 0x17, 0x16, 0x16, 0x16, 0x16, 0x15, 0x15, 0x15 .byte 0x15, 0x14, 0x14, 0x14, 0x14, 0x14, 0x13, 0x12, 0x12, 0x12 .byte 0x12, 0x12, 0x12, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10 .byte 0x10, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0E, 0x0E .byte 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D .byte 0x0D, 0x0D, 0x0C, 0x0C

.byte 0x0C, 0x0C, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0A, 0x40, 0x40,

reload_low_table: # table mapping each angle to the required low reload register value to be put into timer0 to rotate the servo to that angle .byte 0xD0, 0xD2, 0xD5, 0xD8, 0xD8, 0xDE, 0xE1, 0xE3, 0xE6, 0xE9, 0xEC, 0xEF, 0xF2, 0xF4, 0xF7, 0xFA .byte 0xFD, 0x00, 0x03, 0x06, 0x08, 0x0B, 0x0E, 0x11, 0x14, 0x17, 0x19, 0x1C, 0x1F, 0x22, 0x25, 0x28 .byte 0x2B, 0x2D, 0x30, 0x33, 0x36, 0x39, 0x3C, 0x3E, 0x41, 0x44, 0x47, 0x4A, 0x4D, 0x50, 0x52, 0x55 .byte 0x58, 0x5B, 0x5E, 0x61, 0x63, 0x66, 0x69, 0x6C, 0x6F, 0x72, 0x74, 0x77, 0x7A, 0x7D, 0x80, 0x83 .byte 0x86, 0x88, 0x8B, 0x8E, 0x91, 0x94, 0x97, 0x99, 0x9C, 0x9F, 0xA2, 0xA5, 0xA8, 0xAB, 0xAD, 0xB0 .byte 0xB3, 0xB6, 0xB9, 0xBC, 0xBE, 0xC1, 0xC4, 0xC7, 0xCA, 0xCD, 0xD0, 0xD2, 0xD5, 0xD8, 0xDB, 0xDE .byte 0xE1, 0xE3, 0xE6, 0xE9, 0xEC, 0xEF, 0xF2, 0xF4, 0xF7, 0xFA, 0xFD, 0x00, 0x03, 0x06, 0x08, 0x0B .byte 0x0E, 0x11, 0x14, 0x17, 0x19, 0x1C, 0x1F, 0x22, 0x25, 0x28, 0x2B, 0x2D, 0x30, 0x33, 0x36, 0x39 .byte 0x3C, 0x3E, 0x41, 0x44, 0x47, 0x4A, 0x4D, 0x50, 0x52, 0x55, 0x58, 0x5B, 0x5E, 0x61, 0x63, 0x66 .byte 0x69, 0x6C, 0x6F, 0x72, 0x74, 0x77, 0x7A, 0x7D, 0x80, 0x83, 0x86, 0x88, 0x8B, 0x8E, 0x91, 0x94 .byte 0x97, 0x99, 0x9C, 0x9F, 0xA2, 0xA5, 0xA8, 0xAB, 0xAD, 0xB0, 0xB3, 0xB6, 0xB9, 0xBC, 0xBE, 0xC1 .byte 0xC4, 0xC7, 0xCA, 0xCD, 0xD0

reload_high_table: # table mapping each angle to the required high reload register value to be put into timer0 to rotate the servo to that angle .byte 0x00, 0x00 .byte 0x00, 0x01, 0x01 .byte 0x01, 0x02, 0x02, 0x02, 0x02, 0x02 .byte 0x02, 0x02, 0x02, 0x02, 0x02

Please note: Arrows indicate data flow Shaded lines indicate digital data Black lines indicate analogue data

IR Sensor and ADC Connections

Chips Used: ADC0804LCN A/D Converter

DACs, OpAmps and Oscilloscope X & Y inputs

Chips Used: DAC0832LCN D/A Converter & LF356N Op Amp

Chips Used: DAC0832LCN D/A Converter & LF356N Op Amp

Servo Motor, Speaker and Oscilloscope Z-input

APPENDIX C – LOOK-UP TABLES

Reload High and Reload Low tables

The following shows the reload_high_table and reload_low_table tables which use the angle as offset to retrieve the corresponding reload value for each angle to put into the timer for rotating to that angle.

angle	angle	reload value	reload value	reload_high_	reload_low_
(offset)	(hex)	(decimal)	(hexadecimal)	table entry	table entry
000	00	208	00D0	00	D0
001	01	211	00D2	00	D2
002	02	214	00D5	00	D5
003	03	217	00D8	00	D8
004	04	219	00DB	00	DB
005	05	222	00DE	00	DE
006	06	225	00E1	00	E1
007	07	228	00E3	00	E3
008	08	231	00E6	00	E6
009	09	234	00E9	00	E9
010	0A	236	00EC	00	EC
011	0B	239	00EF	00	EF
012	0C	242	00F2	00	F2
013	0D	245	00F4	00	F4
014	0E	248	00F7	00	F7
015	0F	251	00FA	00	FA
016	10	254	00FD	00	FD
017	11	256	0100	01	00
018	12	259	0103	01	03
019	13	262	0106	01	06
020	14	265	0108	01	08
021	15	268	010B	01	0B
022	16	271	010E	01	0E
023	17	273	0111	01	11
024	18	276	0114	01	14
025	19	279	0117	01	17
026	1A	282	0119	01	19
027	1B	285	011C	01	1C
028	1C	288	011F	01	1F
029	1D	290	0122	01	22
030	1E	293	0125	01	25
031	1F	296	0128	01	28
032	20	299	012B	01	2B
033	21	302	012D	01	2D
034	22	305	0130	01	30
035	23	308	0133	01	33
036	24	310	0136	01	36
037	25	313	0139	01	39
-----	----	-----	------	----	----
038	26	316	013C	01	3C
039	27	319	013E	01	3E
040	28	322	0141	01	41
041	29	325	0144	01	44
042	2A	327	0147	01	47
043	2B	330	014A	01	4A
044	2C	333	014D	01	4D
045	2D	336	0150	01	50
046	2E	339	0152	01	52
047	2F	342	0155	01	55
048	30	345	0158	01	58
049	31	347	015B	01	5B
050	32	350	015E	01	5E
051	33	353	0161	01	61
052	34	356	0163	01	63
053	35	359	0166	01	66
054	36	362	0169	01	69
055	37	364	016C	01	6C
056	38	367	016F	01	6F
057	39	370	0172	01	72
058	3A	373	0174	01	74
059	3B	376	0177	01	77
060	3C	379	017A	01	7A
061	3D	382	017D	01	7D
062	3E	384	0180	01	80
063	3F	387	0183	01	83
064	40	390	0186	01	86
065	41	393	0188	01	88
066	42	396	018B	01	8B
067	43	399	018E	01	8E
068	44	401	0191	01	91
069	45	404	0194	01	94
070	46	407	0197	01	97
071	47	410	0199	01	99
072	48	413	019C	01	9C
073	49	416	019F	01	9F
074	4A	418	01A2	01	A2
075	4B	421	01A5	01	A5
076	4C	424	01A8	01	A8
077	4D	427	01AB	01	AB
078	4E	430	01AD	01	AD
079	4F	433	01B0	01	B0
080	50	436	01B3	01	B3
081	51	438	01B6	01	B6
082	52	441	01B9	01	B9

083	53	444	01BC	01	BC
084	54	447	01BE	01	BE
085	55	450	01C1	01	C1
086	56	453	01C4	01	C4
087	57	455	01C7	01	C7
088	58	458	01CA	01	CA
089	59	461	01CD	01	CD
090	5A	464	01D0	01	D0
091	5B	467	01D2	01	D2
092	5C	470	01D5	01	D5
093	5D	473	01D8	01	D8
094	5E	475	01DB	01	DB
095	5F	478	01DE	01	DE
096	60	481	01E1	01	E1
097	61	484	01E3	01	E3
098	62	487	01E6	01	E6
099	63	490	01E9	01	E9
100	64	492	01EC	01	EC
101	65	495	01EF	01	EF
102	66	498	01F2	01	F2
103	67	501	01F4	01	F4
104	68	504	01F7	01	F7
105	69	507	01FA	01	FA
106	6A	510	01FD	01	FD
107	6B	512	0200	02	00
108	6C	515	0203	02	03
109	6D	518	0206	02	06
110	6E	521	0208	02	08
111	6F	524	020B	02	0B
112	70	527	020E	02	0E
113	71	529	0211	02	11
114	72	532	0214	02	14
115	73	535	0217	02	17
116	74	538	0219	02	19
117	75	541	021C	02	1C
118	76	544	021F	02	1F
119	77	546	0222	02	22
120	78	549	0225	02	25
121	79	552	0228	02	28
122	7A	555	022B	02	2B
123	7B	558	022D	02	2D
124	7C	561	0230	02	30
125	7D	564	0233	02	33
126	7E	566	0236	02	36
127	7F	569	0239	02	39
128	80	572	023C	02	3C

129	81	575	023E	02	3E
130	82	578	0241	02	41
131	83	581	0244	02	44
132	84	583	0247	02	47
133	85	586	024A	02	4A
134	86	589	024D	02	4D
135	87	592	0250	02	50
136	88	595	0252	02	52
137	89	598	0255	02	55
138	8A	601	0258	02	58
139	8B	603	025B	02	5B
140	8C	606	025E	02	5E
141	8D	609	0261	02	61
142	8E	612	0263	02	63
143	8F	615	0266	02	66
144	90	618	0269	02	69
145	91	620	026C	02	6C
146	92	623	026F	02	6F
147	93	626	0272	02	72
148	94	629	0274	02	74
149	95	632	0277	02	77
150	96	635	027A	02	7A
151	97	638	027D	02	7D
152	98	640	0280	02	80
153	99	643	0283	02	83
154	9A	646	0286	02	86
155	9B	649	0288	02	88
156	9C	652	028B	02	8B
157	9D	655	028E	02	8E
158	9E	657	0291	02	91
159	9F	660	0294	02	94
160	A0	663	0297	02	97
161	A1	666	0299	02	99
162	A2	669	029C	02	9C
163	A3	672	029F	02	9F
164	A4	674	02A2	02	A2
165	A5	677	02A5	02	A5
166	A6	680	02A8	02	A8
167	A7	683	02AB	02	AB
168	A8	686	02AD	02	AD
169	A9	689	02B0	02	B0
170	AA	692	02B3	02	B3
171	AB	694	02B6	02	B6
172	AC	697	02B9	02	B9
173	AD	700	02BC	02	BC
174	AE	703	02BE	02	BE

175	AF	706	02C1	02	C1
176	B0	709	02C4	02	C4
177	B1	711	02C7	02	C7
178	B2	714	02CA	02	CA
179	B3	717	02CD	02	CD
180	B4	720	02D0	02	D0

Sine and Cosine tables

The sine and cosine tables map angles to sine and (absolute) cosines values respectively

angle	sine (angle)	sine table entrv	cosine (angle)	cosine table entry
000	0.00	00	1.00	FF
001	0.02	04	1.00	FF
002	0.03	08	1.00	FF
003	0.05	0D	1.00	FF
004	0.07	11	1.00	FF
005	0.09	16	1.00	FF
006	0.10	1A	0.99	FE
007	0.12	1F	0.99	FE
008	0.14	23	0.99	FD
009	0.16	28	0.99	FC
010	0.17	2C	0.98	FC
011	0.19	30	0.98	FB
012	0.21	35	0.98	FA
013	0.22	39	0.97	F9
014	0.24	3D	0.97	F8
015	0.26	42	0.97	F7
016	0.28	46	0.96	F6
017	0.29	4A	0.96	F4
018	0.31	4F	0.95	F3
019	0.33	53	0.95	F2
020	0.34	57	0.94	F0
021	0.36	5B	0.93	EE
022	0.37	5F	0.93	ED
023	0.39	64	0.92	EB
024	0.41	68	0.91	E9
025	0.42	6C	0.91	E8
026	0.44	70	0.90	E6
027	0.45	74	0.89	E4
028	0.47	78	0.88	E2
029	0.48	7C	0.87	DF
030	0.50	80	0.87	DD
031	0.52	83	0.86	DB
032	0.53	87	0.85	D9
033	0.54	8B	0.84	D6
034	0.56	8F	0.83	D4
035	0.57	92	0.82	D1

angle	sine (angle)	sine table entry	cosine (angle)	cosine table entry
036	0.59	96	0.81	CF
037	0.60	9A	0.80	CC
038	0.62	9D	0.79	C9
039	0.63	A1	0.78	C6
040	0.64	A4	0.77	C4
041	0.66	A7	0.75	C1
042	0.67	AB	0.74	BE
043	0.68	AE	0.73	BB
044	0.69	B1	0.72	B8
045	0.71	B5	0.71	B5
046	0.72	B8	0.69	B1
047	0.73	BB	0.68	AE
048	0.74	BE	0.67	AB
049	0.75	C1	0.66	A7
050	0.77	C4	0.64	A4
051	0.78	C6	0.63	A1
052	0.79	C9	0.62	9D
053	0.80	CC	0.60	9A
054	0.81	CF	0.59	96
055	0.82	D1	0.57	92
056	0.83	D4	0.56	8F
057	0.84	D6	0.54	8B
058	0.85	D9	0.53	87
059	0.86	DB	0.51	83
060	0.87	DD	0.50	7F
061	0.87	DF	0.48	7C
062	0.88	E2	0.47	78
063	0.89	E4	0.45	74
064	0.90	E6	0.44	70
065	0.91	E8	0.42	6C
066	0.91	E9	0.41	68
067	0.92	EB	0.39	63
068	0.93	ED	0.37	5F
069	0.93	EF	0.36	5B
070	0.94	F0	0.34	57
071	0.95	F2	0.33	53

073 0.96 F4 0.29 4A 074 0.96 F6 0.28 46 075 0.97 F7 0.26 42 076 0.97 F8 0.24 3D 077 0.97 F9 0.22 39 078 0.98 FA 0.21 35 079 0.98 FB 0.19 30 080 0.98 FC 0.16 28 082 0.99 FC 0.16 28 082 0.99 FE 0.12 1F 084 0.99 FE 0.10 1A 085 1.00 FF 0.07 11 087 1.00 FF 0.03 08 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00	072	0.95	F3	0.31	4F
074 0.96 F6 0.28 46 075 0.97 F7 0.26 42 076 0.97 F8 0.24 3D 077 0.97 F9 0.22 39 078 0.98 FA 0.21 35 079 0.98 FB 0.19 30 080 0.98 FC 0.17 2C 081 0.99 FC 0.16 28 082 0.99 FE 0.10 1A 083 0.99 FE 0.10 1A 084 0.99 FE 0.10 1A 085 1.00 FF 0.02 04 086 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00	073	0.96	F4	0.29	4A
075 0.97 F7 0.26 42 076 0.97 F8 0.24 3D 077 0.97 F9 0.22 39 078 0.98 FA 0.21 35 079 0.98 FB 0.19 30 080 0.98 FC 0.17 2C 081 0.99 FC 0.16 28 082 0.99 FD 0.14 23 083 0.99 FE 0.12 1F 084 0.99 FE 0.07 11 087 1.00 FF 0.03 08 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99	074	0.96	F6	0.28	46
076 0.97 F8 0.24 3D 077 0.97 F9 0.22 39 078 0.98 FA 0.21 35 079 0.98 FB 0.19 30 080 0.98 FC 0.17 2C 081 0.99 FC 0.16 28 082 0.99 FE 0.12 1F 084 0.99 FE 0.10 1A 085 1.00 FF 0.07 11 087 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.01 1A 093 1.00 FF 0.02 04 092 1.00	075	0.97	F7	0.26	42
077 0.97 F9 0.22 39 078 0.98 FA 0.21 35 079 0.98 FB 0.19 30 080 0.98 FC 0.17 2C 081 0.99 FC 0.16 28 082 0.99 FE 0.12 1F 084 0.99 FE 0.10 1A 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.05 0D 094 1.00 FF 0.07 11 095 1.00 FF 0.04 08 099 FE <t< td=""><td>076</td><td>0.97</td><td>F8</td><td>0.24</td><td>3D</td></t<>	076	0.97	F8	0.24	3D
078 0.98 FA 0.21 35 079 0.98 FB 0.19 30 080 0.98 FC 0.17 2C 081 0.99 FC 0.16 28 082 0.99 FE 0.12 1F 084 0.99 FE 0.10 1A 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.12 1F 098 0.99 FE 0.12 1F 098 0.99	077	0.97	F9	0.22	39
079 0.98 FB 0.19 30 080 0.98 FC 0.17 2C 081 0.99 FC 0.16 28 082 0.99 FD 0.14 23 083 0.99 FE 0.12 1F 084 0.99 FE 0.10 1A 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 PD <t< td=""><td>078</td><td>0.98</td><td>FA</td><td>0.21</td><td>35</td></t<>	078	0.98	FA	0.21	35
080 0.98 FC 0.17 $2C$ 081 0.99 FC 0.16 28 082 0.99 FD 0.14 23 083 0.99 FE 0.12 $1F$ 084 0.99 FE 0.10 $1A$ 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.05 $0D$ 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.07 11 095 1.00 FF 0.07 11 096 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 101 0.98 FA 0.21 35 103 0.97 F3 0.31 $4F$ 106 0.96 F6 0.28 46 107 0.96 F4 0.29 $4A$ 108 0.95 <t< td=""><td>079</td><td>0.98</td><td>FB</td><td>0.19</td><td>30</td></t<>	079	0.98	FB	0.19	30
081 0.99 FC 0.16 28 082 0.99 FD 0.14 23 083 0.99 FE 0.12 $1F$ 084 0.99 FE 0.10 $1A$ 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.07 01 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.07 11 092 1.00 FF 0.07 11 092 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 096 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 $3D$ 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 <t< td=""><td>080</td><td>0.98</td><td>FC</td><td>0.17</td><td>2C</td></t<>	080	0.98	FC	0.17	2C
082 0.99 FD 0.14 23 083 0.99 FE 0.12 $1F$ 084 0.99 FE 0.10 $1A$ 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.07 01 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 092 1.00 FF 0.07 11 092 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 096 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 $3D$ 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 $4A$ 108 0.95 <t< td=""><td>081</td><td>0.99</td><td>FC</td><td>0.16</td><td>28</td></t<>	081	0.99	FC	0.16	28
083 0.99 FE 0.12 $1F$ 084 0.99 FE 0.10 $1A$ 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.09 16 094 1.00 FF 0.10 $1A$ 096 0.99 FE 0.10 $1A$ 097 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 $3D$ 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 $4A$ 108 0.95 F3 0.31 $4F$ 109 0.95 F2 0.33 53 111 0.93 <t< td=""><td>082</td><td>0.99</td><td>FD</td><td>0.14</td><td>23</td></t<>	082	0.99	FD	0.14	23
084 0.99 FE 0.10 $1A$ 085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.05 $0D$ 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 $1A$ 097 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 $3D$ 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 $4A$ 108 0.95 F3 0.31 $4F$ 109 0.95 F2 0.33 53 110 0.94 F0 0.34 57 111 0.93 ED 0.37 $5F$ 113 0.92 <t< td=""><td>083</td><td>0.99</td><td>FE</td><td>0.12</td><td>1F</td></t<>	083	0.99	FE	0.12	1F
085 1.00 FF 0.09 16 086 1.00 FF 0.07 11 087 1.00 FF 0.03 08 089 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.01 1A 096 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97	084	0.99	FE	0.10	1A
086 1.00 FF 0.07 11 087 1.00 FF 0.05 0D 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 092 1.00 FF 0.07 11 093 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97	085	1.00	FF	0.09	16
087 1.00 FF 0.05 0D 088 1.00 FF 0.02 04 090 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96	086	1.00	FF	0.07	11
088 1.00 FF 0.03 08 089 1.00 FF 0.02 04 090 1.00 FF 0.02 04 092 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96	087	1.00	FF	0.05	0D
089 1.00 FF 0.02 04 090 1.00 FF 0.00 00 091 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.05 0D 094 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 2C 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97	088	1.00	FF	0.03	08
0901.00FF 0.00 00 091 1.00FF 0.02 04 092 1.00FF 0.04 08 093 1.00FF 0.05 $0D$ 094 1.00FF 0.07 11 095 1.00FF 0.09 16 096 0.99 FE 0.10 $1A$ 097 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 $2C$ 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 $3D$ 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 $4A$ 108 0.95 F2 0.33 53 110 0.94 F0 0.34 57 111 0.93 ED 0.37 $5F$ 113 0.92 EB 0.39 64 114 0.91 E9 0.41 68 115 0.91 E7 0.42 $6C$ 116 0.90 E6 0.44 70 117 0.88 E2 0.47 78 119 0.87 DF <td< td=""><td>089</td><td>1.00</td><td>FF</td><td>0.02</td><td>04</td></td<>	089	1.00	FF	0.02	04
091 1.00 FF 0.02 04 092 1.00 FF 0.04 08 093 1.00 FF 0.05 0D 094 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 4A 108 0.95 F3 0.31 4F 109 0.95	090	1.00	FF	0.00	00
0921.00FF0.0408 093 1.00FF0.050D 094 1.00FF0.0711 095 1.00FF0.0916 096 0.99FE0.101A 097 0.99FE0.121F 098 0.99FD0.1423 099 0.99FC0.16281000.98FC0.172C1010.98FB0.19301020.98FA0.21351030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.86DB0.52831200.87DD0.50801210.85D90.5387	091	1.00	FF	0.02	04
093 1.00 FF 0.05 0D 094 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 2C 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 4A 108 0.95 F3 0.31 4F 109 0.95	092	1.00	FF	0.04	08
094 1.00 FF 0.07 11 095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 2C 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 4A 108 0.95 F3 0.31 4F 109 0.94 F0 0.34 57 111 0.93	093	1.00	FF	0.05	0D
095 1.00 FF 0.09 16 096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 2C 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 4A 108 0.95 F3 0.31 4F 109 0.93 ED 0.37 5F 111 0.93 EB 0.39 64 112 0.93	094	1.00	FF	0.07	11
096 0.99 FE 0.10 1A 097 0.99 FE 0.12 1F 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 2C 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 3D 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 4A 108 0.95 F3 0.31 4F 109 0.95 F2 0.33 53 110 0.94 F0 0.34 57 111 0.93 ED 0.37 5F 113 0.92	095	1.00	FF	0.09	16
097 0.99 FE 0.12 $1F$ 098 0.99 FD 0.14 23 099 0.99 FC 0.16 28 100 0.98 FC 0.17 $2C$ 101 0.98 FB 0.19 30 102 0.98 FA 0.21 35 103 0.97 F9 0.23 39 104 0.97 F8 0.24 $3D$ 105 0.97 F7 0.26 42 106 0.96 F6 0.28 46 107 0.96 F4 0.29 $4A$ 108 0.95 F3 0.31 $4F$ 109 0.95 F2 0.33 53 110 0.94 F0 0.34 57 111 0.93 ED 0.37 $5F$ 113 0.92 EB 0.39 64 114 0.91 E9 0.41 68 115 0.91 E7 0.42 $6C$ 116 0.90 E6 0.44 70 117 0.89 E4 0.45 74 118 0.88 $E2$ 0.47 78 119 0.87 DF 0.49 $7C$ 120 0.87 DD 0.50 80 121 0.86 DB 0.52 83 122 0.85 D9 0.53 87	096	0.99	FE	0.10	1A
0980.99FD0.14230990.99FC0.16281000.98FC0.172C1010.98FB0.19301020.98FA0.21351030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	097	0.99	FE	0.12	1F
0990.99FC0.16281000.98FC0.172C1010.98FB0.19301020.98FA0.21351030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	098	0.99	FD	0.14	23
1000.98FC0.172C1010.98FB0.19301020.98FA0.21351030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	099	0.99	FC	0.16	28
1010.98FB0.19301020.98FA0.21351030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	100	0.98	FC	0.17	2C
1020.98FA0.21351030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	101	0.98	FB	0.19	30
1030.97F90.23391040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	102	0.98	FA	0.21	35
1040.97F80.243D1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801220.85D90.5387	103	0.97	F9	0.23	39
1050.97F70.26421060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	104	0.97	F8	0.24	3D
1060.96F60.28461070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	105	0.97	F7	0.26	42
1070.96F40.294A1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	106	0.96	F6	0.28	46
1080.95F30.314F1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	107	0.96	F4	0.29	4A
1090.95F20.33531100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	108	0.95	F3	0.31	4F
1100.94F00.34571110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	109	0.95	F2	0.33	53
1110.93EE0.365B1120.93ED0.375F1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	110	0.94	F0	0.34	57
112 0.93 ED 0.37 5F 113 0.92 EB 0.39 64 114 0.91 E9 0.41 68 115 0.91 E7 0.42 6C 116 0.90 E6 0.44 70 117 0.89 E4 0.45 74 118 0.88 E2 0.47 78 119 0.87 DF 0.49 7C 120 0.87 DD 0.50 80 121 0.86 DB 0.52 83 122 0.85 D9 0.53 87	111	0.93	EE	0.36	5B
1130.92EB0.39641140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	112	0.93	ED	0.37	5F
1140.91E90.41681150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	113	0.92	EB	0.39	64
1150.91E70.426C1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	114	0.91	E9	0.41	68
1160.90E60.44701170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	115	0.91	E7	0.42	6C
1170.89E40.45741180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	116	0.90	E6	0.44	70
1180.88E20.47781190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	117	0.89	E4	0.45	74
1190.87DF0.497C1200.87DD0.50801210.86DB0.52831220.85D90.5387	118	0.88	E2	0.47	78
1200.87DD0.50801210.86DB0.52831220.85D90.5387	119	0.87	DF	0.49	7C
1210.86DB0.52831220.85D90.5387	120	0.87	DD	0.50	80
122 0.85 D9 0.53 87	121	0.86	DB	0.52	83
	122	0.85	D9	0.53	87

123	0.84	D6	0.54	8B
124	0.83	D4	0.56	8F
125	0.82	D1	0.57	92
126	0.81	CF	0.59	96
127	0.80	CC	0.60	9A
128	0.79	C9	0.62	9D
129	0.78	C6	0.63	A1
130	0.77	C4	0.64	A4
131	0.75	C1	0.66	A8
132	0.74	BE	0.67	AB
133	0.73	BB	0.68	AE
134	0.72	B8	0.69	B1
135	0.71	B4	0.71	B5
136	0.69	B1	0.72	B8
137	0.68		0.72	BB
138	0.67		0.70	RE
130	0.66	Δ7	0.74	
1/0	0.00	ΔΛ	0.75	
1/1	0.04	Λ4	0.77	04
141	0.03		0.70	
142	0.62	90	0.79	09
143	0.60	99	08.0	
144	0.59	96	0.81	
145	0.57	92	0.82	D1
146	0.56	8	0.83	D4
147	0.54	8B	0.84	D6
148	0.53	87	0.85	D9
149	0.51	83	0.86	DB
150	0.50	7F	0.87	DD
151	0.48	7C	0.87	DF
152	0.47	78	0.88	E2
153	0.45	74	0.89	E4
154	0.44	70	0.90	E6
155	0.42	6C	0.91	E8
156	0.41	68	0.91	E9
157	0.39	63	0.92	EB
158	0.37	5F	0.93	ED
159	0.36	5B	0.93	EF
160	0.34	57	0.94	F0
161	0.33	53	0.95	F2
162	0.31	4F	0.95	F3
163	0.29	4A	0.96	F4
164	0.28	46	0.96	F6
165	0.26	42	0.97	F7
166	0.24	3D	0.97	F8
167	0.22	39	0.97	F9
168	0.21	35	0.98	FA
169	0.19	30	0.98	FB
170	0.17	2C	0.98	FC
171	0.16	27	0.99	FC
172	0.14	23	0.99	FD
173	0.12	1F	0.99	FE
			-	

174	0.10	1A	0.99	FE
175	0.09	16	1.00	FF
176	0.07	11	1.00	FF
177	0.05	0D	1.00	FF
178	0.03	08	1.00	FF

179	0.02	04	1.00	FF
180	0.00	00	1.00	FF

Distance Table

Maps ADC readings from IR sensor to distances of object from sensor, uses hex reading as offset

400			Tabla	I			1	Tabla	1 1		1		Table
ADC	Hov	Diotonoo			ADC Dooding	Hov	Dictoroo	1 able		ADC Dooding	Hov	Dictoro	Table
(decimal)	Reading	Uisiance (cm)	(hev)	((decimal)	Reading	(cm)	(hex)		(decimal)	Reading	(cm)	(hex)
	00	(G11) 64	40	<u>`</u>	038	26	63	3F		076	4C	32	20
001	01	64	40		039	27	62	3E		077	4D	32	20
002	02	64	40	_	040	28	61	3D		078	4E	31	1F
003	03	64	40	-	041	29	60	3C		079	4F	31	1F
004	04	64	40		042	2A	59	3B		080	50	31	1F
005	05	64	40		043	2B	58	ЗA		081	51	30	1E
006	06	64	40		044	2C	57	39		082	52	30	1E
007	07	64	40		045	2D	56	38		083	53	30	1E
800	08	64	40		046	2E	55	37	-	084	54	29	1D
009	09	64	40		047	2F	54	36		085	55	29	1D
010	0A	64	40		048	30	53	35		086	56	28	1C
011	0B	64	40		049	31	52	34	-	087	57	28	1C
012	0C	64	40		050	32	51	33	-	088	58	28	1C
013	0D	64	40		051	33	50	32	-	089	59	27	1B
014	0E	64	40		052	34	49	31	-	090	5A	27	1B
015	0F	64	40		053	35	48	30		091	5B	27	1B
016	10	64	40		054	36	47	2F		092	5C	26	1A
017	11	64	40		055	37	46	2E	-	093	5D	26	1A
018	12	64	40		056	38	46	2E	-	094	5E	25	19
019	13	64	40		057	39	45	2D	-	095	5F	25	19
020	14	64	40		058	3A	44	2C	-	096	60	25	19
021	15	64	40		059	3B	44	2C	-	097	61	24	18
022	16	64	40		060	3C	43	2B	-	098	62	24	18
023	17	64	40		061	3D	42	2A	-	099	63	24	18
024	18	64	40		062	3E	42	2A	-	100	64	24	18
025	19	64	40		063	3F	40	28	-	101	65	23	17
026	1A	64	40		064	40	39	27	-	102	66	23	17
027	1B	64	40		065	41	38	26	-	103	67	23	17
028	1C	64	40		066	42	37	25		104	68	23	17
029	1D	64	40		067	43	37	25		105	69	22	16
030	1E	64	40		068	44	36	24	-	106	6A	22	16
031	1F	64	40		069	45	36	24		107	6B	22	16
032	20	64	40	Ļ	070	46	35	23		108	6C	22	16
033	21	64	40	Ļ	071	47	35	23		109	6D	21	15
034	22	64	40	Ļ	072	48	34	22		110	6E	21	15
035	23	64	40	Ļ	073	49	34	22		111	6F	21	15
036	24	64	40	Ļ	074	4A	33	21		112	70	21	15
037	25	64	40		075	4B	33	21		113	71	20	14

ADC			Table
Keading	Hex	Distance	(hox)
	reading	(011)	
114	72	20	14
115	73	20	14
116	74	20	14
11/	75	20	14
118	76	19	13
119	//	19	13
120	78	19	13
121	79	19	13
122	/A 70	19	13
123	/B	19	13
124	70	19	13
125	7D	18	12
126	7E	18	12
127	7F	18	12
128	80	18	12
129	81	18	12
130	82	18	12
131	83	17	11
132	84	17	11
133	85	17	11
134	86	17	11
135	87	17	11
136	88	17	11
137	89	16	10
138	8A	16	10
139	8B	16	10
140	8C	16	10
141	8D	16	10
142	8E	16	10
143	8F	16	10
144	90	16	10
145	91	15	0F
146	92	15	0F
147	93	15	0F
148	94	15	0F
149	95	15	0F
150	96	15	0F
151	97	15	0F
152	98	15	0F
153	99	15	0F
154	94	14	0F
155	9R	14	0E
156	90	1/	
157		14	
159	9D	14	
100	30	14	
109	95	14	
100	AU	14	UE

ADC		Distance	Table
Reading	Hex	(cm)	entry
(decimal)	Reading		(hex)
161	A1	14	0E
162	A2	14	0E
163	A3	14	0E
164	A4	14	0E
165	A5	13	0D
166	A6	13	0D
167	A7	13	0D
168	A8	13	0D
169	A9	13	0D
170	AA	13	0D
171	AB	13	0D
172	AC	13	0D
173	AD	13	0D
174	AE	13	0D
175	AF	13	0D
176	B0	13	0D
177	B1	13	0D
178	B2	12	0C
179	B3	12	0C
180	B4	12	00
181	B5	12	00
182	B6	12	00
183	B7	12	00
184	B8	12	00
185	R9	12	00
186	ΒΔ	12	00
187	BR	12	00
188	BC	12	00
180	BD	12	00
109	BE	12	00
101		12	00
102		12	00
102	00	10	00
193		11	00
194	02	11	
190		11	
107	04	11	
19/	05	11	
198		11	
199		11	UB
200	80	10	UA
201	09	10	UA
202	CA	10	UA
203	CB	10	0A
204	CC	10	0A
205	CD	10	0A
206	CE	10	0A
207	CF	10	0A
208	D0	10	0A
209	D1	10	0A

ADC			Table
Reading	Hex	Distance	entry (head)
(decimal)	Reading	(011)	
210	D2	10	
211	D3	10	
212	D4	10	
213	D5	10	0A
214	D6	10	0A
215	D7	10	0A
216	D8	10	0A
217	D9	10	0A
218	DA	10	0A
219	DB	10	0A
220	DC	10	0A
221	DD	10	0A
222	DE	10	0A
223	DF	10	0A
224	E0	10	0A
225	E1	10	0A
226	E2	10	0A
227	E3	10	0A
228	E4	09	09
229	E5	09	09
230	E6	09	09
231	E7	09	09
232	E8	09	09
233	E9	09	09
234	EA	09	09
235	EB	09	09
236	EC	09	09
237	ED	09	09
238	EE	09	09
239	EF	09	09
240	F0	09	09
241	F1	09	09
242	F2	09	09
243	F3	09	09
244	F4	09	09
245	F5	09	09
246	. <u>5</u> F6	09	09
247	F7	64	40
248	F8	64	40
249	FQ	64	40
250	FΔ	64	<u>40</u>
251	FR	64	<u>40</u>
250	FC	64	40
202		64	40
200		04 64	40
204		04	40
255	FF	64	40

BIBLIOGRAPHY

- University of York Computer Science Department Microcomputer Communications Project Module Website by Nick Pears http://www-course.cs.york.ac.uk/mcp
- DC Power Supply GPC-M Series Analogue Digital Type GW-Instek User Manual
- GOS 6xxG Family Dual Trace Oscilloscope GW-Instek User Manual
- Zilog Z80 Family CPY User Manual UM0080020202
- The National Semiconductor Website www.national.com (for chip datasheets)
- Farnell InOne Website www.farnell.com (for chip costing)

Please note that some of the hardware diagrams in Appendix B are modified versions of those found in the National Semiconductor Website's datasheets for certain chips.