

Microcomputer

Communications

Project
Assessment 2003/2004

Syedur Rahman

1

TABLE OF CONTENTS
Introduction __2

Overview of Hardware/Software __3
Infra-red sensor ___ 4

Servo-Motor ___ 5

The Oscilloscope __ 6

The Speaker__ 6

Software Overview __ 6

Basic Overview of Each Mode of Operation _____________________________________ 12
Radar Mode ___ 12

Profiler Mode __ 13

Tracker Mode __ 14

PseudoCode for Other Important Modules _______________________________________ 16

Design/Implementation Details and Alternatives______________________________19
Input/Output __ 19

LookUp Tables and Arrays ___ 19

Conversion of Polar to Cartesian Co-ordinates____________________________________ 20

Radar __ 21

Speaker __ 22

Testing and Evaluation __23
Testing separate components ___ 23

I/R Sensor Testing __ 23

Servo Motor Testing___ 26

Speaker Testing __ 26

Oscilloscope/Cartesian Coordinates Testing __ 26

System Testing __ 27
Radar Mode ___ 27

Tracker Mode __ 30

Profiler Mode __ 31

Full System Testing ___ 33

Technical Specification __34

Costing ___35

Limitations and Future Improvements ______________________________________36

Appendix A – The Code __37

Appendix B – Circuit Diagrams ___68
Block Diagram of Complete System __ 68

IR Sensor and ADC Connections ___ 69

DACs, OpAmps and Oscilloscope X & Y inputs_______________________________________ 69

Servo Motor, Speaker and Oscilloscope Z-input _______________________________________ 70

Appendix C – Lookup Tables ___71
Reload High and Reload Low tables __ 71

Sine and Cosine tables ___ 75

Distance Table ___ 77

Bibliography ___79

2

INTRODUCTION

After going to the introductory MCP lecture, I have to admit I was a bit intimidated (which is

usually very hard for me to admit), by this assignment, which seemed rather complicated and

tedious. All the talk about infra-red sensors, servo-motors and other things I haven’t really

handled in computer science courses before just made it seem that way. Later I realised all I had

to do was stick to the basic principles taught in the previous hardware courses and not be that

concerned with the other aspects of the system, especially those that brought back horrid

memories of A-level physics.

The aim of this project was to integrate a Z80 processor system with a infra-red sensor attached

to a rotating servo-motor to build some kind of radar (I realise it is not really a radar since that

would require radio and not infra-red waves). Fortunately, this design would not be so low level,

since this Z80 processor already came with its own data and address buses, RAM chips, external

ports and an LCD display with a keypad.

There are three modes of function the completed system was supposed to be able to perform.

First in radar mode, the system is supposed to sweep through a predefined angle and then display

objects in the vicinity by showing their positions on the LCD display (as polar/cartesian co-

ordinates) and also on the oscilloscope. There would also be a speaker to produce sound effects

indicating whether an object is there when the sensor is at any particular angle.

In the tracker mode, the sensor is supposed to follow an object that is slowly being moved

around and once again a sound effect indicates whether the object is still in the sensor’s line of

sight. Once again, the object’s position would have to be shown on the LCD display and

oscilloscope.

In the profiler mode, it sweeps through the predefined angle as in the radar mode, only after its

done sweeping, it displays some kind of image on the oscilloscope which would show the shape

of the object placed near the sensor. While the object is being scanned, the speaker would make

some kind of sound indicative of the shape of the object.

My partner and I decided to stick to a very simple design as we did for CTS (even though that

did not get us too many marks). Our main objective for this project was making a system that

meets the minimum requirements with particular emphasis on simplicity, cost-effectiveness and

of course minimum effort.

3

OVERVIEW OF HARDWARE/SOFTWARE
Fortunately, we were given the SBC board this time to construct our hardware around. This

made this assignment quite ridiculously easy (to design at least, the implementation however was

a nightmare as in any project). First of all the board, the RAM chips, the LCD display and the

keypad are already wired into the Z80, so there was not much time spent in cutting out little bits

of wire, sticking them to pins and later spending hours trying to figure out why our system was

not working before discovering it was because of two wires switched around or a faulty

breadboard (I was obviously very frustrated with that through out the CTS project). The fact that

the Z80 address and data pins are in absolutely no meaningful order did not make things any

easier in the previous assignment. The SBC board also comes with three 8-bit ports which make

it very convenient to do I/O operations since these also act as latches. A program can also be

downloaded from a linux terminal directly into the RAM, which makes testing a lot simpler than

having to burn a ROM chip for every little change in code.

The basic external hardware required were:

1. Two digital-to-analogue converters (DACs) and opamps to plot points on the

oscilloscope using digital data from the SBC board

2. An analogue-to-digital converter to convert the analogue reading from the infra-red

sensor into digital data that can be understood and manipulated by the processor.

The ports on the SBC made it very easy to do I/O operations without involving the data bus or

any address lines at all. This made the hardware construction very simple, however it also meant

software required to run the system ended up being very complicated since we were using the

three serial ports to drive six I/O devices (the two DACs, the ADC, the servo-motor, the speaker

and the oscilloscope Z input).

4

Block Diagram of Overall System

The block diagram above describes how the system works with arrows indicating data flow

Infra-red sensor
The infra-red sensor generates an analogue voltage depending on the distance between any

obstacle and the sensor. This analogue reading is fed in to the input of the ADC with the

appropriate reference voltage to produce a digital output which is later converted by software

into distances using a reading-to-distance look up table stored in memory.

5

A graph of voltage against distance looks like this

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Distance (cm)

V
o

lt
a
g

e
 (

V
)

Had this been a simple straight line we would have been able to use a simple equation for

calculating distances from voltages (converted to digital values from the ADC). We had decided

that our system would have a range between 10 and 60cm. As you can see at 10cm the voltage

reading is about 2.1V. So the reference voltage we put in to the ADC was about 2.2V (using a

potential divider, please see circuit diagrams for details).

Sensor Calibration

A simple program was written which took readings off the ADC and then displayed the digital

reading received in hex on the LCD monitor. Several readings of ADC values were taken at

different points between 10 and 60cm (which is the operational range of this system) at every

1cm. These values needed to be averaged (since the ADC values were inconsistent at times) and

then a reading-to-distance table was constructed which mapped each binary value from the ADC

to a distance value. Please see Testing/Evaluation for calibration tables.

In between binary values, which were not read for any specific distances (at each 1cm interval)

simply mapped to the closest 1cm discrete value on the table.

Servo-Motor
The servo-motor is controlled by giving it a pulse of period 5ms, i.e. a frequency of 200Hz and

the peak time of this pulse determines the angle it will rotate to. The Z80 has two internal

clocks/timers, which came in very handy for this purpose. The timers can be initialised with

reload values, and then the timer starts counting down beginning from the reload value. Once it

has counted down to zero, it generates an interrupt (distinct for each timer) and then it starts

counting down from the reload value again.

The interrupt routine was made such that it flips a bit on Port B every time the timer counts down

to zero. After much experimentation while monitoring the output of the port using the

oscilloscope we found that the timer takes 5ms to countdown with a reload value of 0600h.

Controlling the motor was simple from then on, we could start with a certain peak time value

with the reload register with the clock output on the port set to a 1 and then after its counted

down to 0 (this representing a high on the output), we would flip the bit and at the same time set

6

the reload value to 0600h-peak (this representing a low on the output). So, we would have a

wave of period 5ms and the peak period is controlled by the initial value put into the reload

registers.

After making a few measurements, I discovered that there was a very linear relationship between

angle and reload value. I took a few readings and plotted a graph and then using linear regression

techniques I found a simple equation involving reload values and angle

Reload = 2.84444*angle + 208

Once again a table was constructed that mapped angles to reload values so that the program

would put in the suitable reload value for each angle when it requires to move the sensor to that

angle.

The Oscilloscope
The X-input of the oscilloscope was connected to the lower 7 bits of port B (via an digital to

analogue converter and opamp) and the Y-input of the oscilloscope was connected to the lower 6

bits of port C (via an digital to analogue converter and opamp). I set the range of the system to be

between 10 and 60cm. For a full sweep, this would require a semi-circle of radius 60 cm and let

us assume we used one pixel per cm. Therefore the y-axis would need 60 divisions and the x-

axis would need 120 division, so 6 bits (64 divisions) and 7 bits (128 divisions) were appropriate

for x and y respectively. The Z-input was controlled by bit7 of port B. If the bit was set to a high

(5V), this turns the beam off. This was very useful, since if we left the beam on while plotting

between two points, there would be quite a few unwanted dots plotted on the screen in the mean

time. So, this bit was set to 0 to turn the beam on, or set to 1 to turn it off.

For the x and y co-ordinates, polar co-ordinates (angle of sensor and distance read) had to be

converted into cartesian co-ordinates. For this please see details on the get_coords module in the

software modules section as well as the section on Design/Implementation

The Speaker
The speaker is controlled in a very similar way as the servo motor is. The processor has another

timer, which can generate interrupts at a regular interval depending on the value put into its high

and low reload registers. At each interval the speaker bit (bit6 on portC) is flipped giving a sound

of a frequency dependent on the reload registers. In all cases, we are supposed to make a sound

depending on the distance between the sensor and the object. This can be done by simply putting

the ADC data read from the sensor (from portA) into the reload low register of timer1. I found

that the sound is very different for objects at different distances, which is exactly what was

required.

Software Overview
I decided to do a sweep of about 90 degrees, starting at 45 degrees and ending at 135 degrees at

every one degree for the profiler and radar modes. However for the tracker mode, I decided to

leave the range of angles between 0 and 180, since tracking something in a smaller range of

angles just seems pointless.

7

The following shows a list of all modules in the program along with brief descriptions of what

they do. I would have preferred to draw a diagram showing the relationships between modules

but unfortunately this would take too much space and be too complicated to be legible at all.

Procedure

(parameters)

Description Modules Called

(parameters)

main_menu Displays the main menu options. Checks

value of mode, then runs appropriate

subroutine (1=radar, 2=tracker,

3=profiler)

clear

display_menu

radar

tracker

profiler

radar Performs the radar mode init_angle45

enable_servo_timer

servo_delay_full

disable_servo_timer

rotate_to_angle(angle)

get_distance

clear

display_radar_mode

display_angle(angle)

plot_outline (mode)

get_coords (angle,

distance)

plot_point (x_coord,

y_coord)

beam_on

beam_off

display_angle_distance

(angle, distance)

make_sound

tracker Performs the tracker mode init_angle0

servo_delay_full

rotate_to_angle (angle)

get_distance

clear

display_tracker_seeking

display_tracker_locked

display_angle_distance

(angle, distance)

plot_outline(mode)

get_coords (angle,

distance)

plot_point(x_coord,

y_coord)

beam_on

beam_off

make_sound

show_profile

profiler Performs the profiler mode init_angle45

enable_servo_timer

8

servo_delay_full

disable_servo_timer

rotate_to_angle(angle)

get_distance

clear

display_radar_mode

display_angle_distance

(angle,distance)

plot_outline(mode)

get_coords (angle,

distance)

plot_point (x_coord,

y_coord)

beam_on

beam_off

make_sound

show_profile

show_profile Uses data from profiler (which enters

values into the x_coords and y_coords

table) to plot points displaying the

profile of the object scanned earlier

plot_outline (mode)

plot_point (x_coord,

y_coord)

enable_servo_timer Enables timer0 of the processor

disable_servo_timer Disables timer0 of the processor

servo_timer_toggle When timer0 generates an interrupt, the

output to the servo motor (PortC B7) is

toggled and it is set such that the next

interrupt occurs at 5ms-previous time

(i.e. giving a wave of period 5ms)

enable_speaker_timer Enables timer1 of the processor

disable_speaker_timer Disables timer1 of the processor

speaker_timer_toggle When timer1 generates an interrupt, the

output to the speaker (PortC B6) is

toggled, giving a square wave

rotate_to_angle Sets timer0’s reload registers using

appropriate values from the reload_high

and reload_low tables corresponding to

the angle given.

Runs timer0 for a short time (enough for

a maximum 5 degree rotation), allowing

the servo to rotate to that angle and then

disables timer0.

enable_servo_timer

disable_servo_timer

get_coords (angle,

radius)

Gets polar co-ordinates from angle and

distance and converts them into

cartesian co-ordinates and stores the

results in global variables x_coord and

y_coord to be plotted on the

oscilloscope later

Note: x_coord is actually the

oscilloscope x-coordinate (with 64 as

the center of our 128bit x-axis display)

9

plot_point (x_coord,

y_coord)

Puts x_coord into the lower 7 bits of

PortB (oscilloscope x-input) and

y_coord into the lower 6 bits of PortC

(oscilloscope y-input). Turns the

oscilloscope beam on for a short while

to plot the point on the oscilloscope and

then tunrs the beam off

beam_on

beam_off

get_distance Reads value from ADC and using the

distance table converts the ADC value

into distance from sensor and stores this

value in the global variable distance.

(Four readings of distances are taken

and only the average is returned)

display_angle_distanc

e (angle, distance)

Displays current angle, distance, x-

coordinate and y-coordinate on LCD

screen (uses display_bin_to_dec to

convert these numbers)

display_bin_to_dec (angle)

display_bin_to_dec

(distance)

display_bin_to_dec

(x_coord)

display_bin_to_dec

(y_coord)

delay_keypad

display_bin_to_dec

(number)

Converts the variable number, which is

in binary into a 3 digit decimal number

and displays each of these digits on the

LCD

display_character (digit)

delay_keypad

display_character

(register a)

Uses the ASCII code stored in register

A to display the character on the LCD

and then waits for a very short time to

allow the character to appear on it

delay_keypad

increase_angle3 Increments global variable angle by 3

decrease_angle3 Decrements global variable angle by 3

increase_angle2 Increments global variable angle by 2

decrease_angle2 Decrements global variable angle by 2

make_sound Using the ADC value as the frequency,

it enables the speaker for a short period

indicating distance of the object (since it

determines the frequency of the sound

produced)

enable_speaker_timer

delay_sound

disable_speaker_timer

keypad_int When the keypad is pressed, global

variable mode is updated according to

key pressed (if invalid mode i.e. not

between 1 and 3, then mode is set to 0,

which causes all mode modules to return

to the main menu)

clear Sends command to LCD to clear the

scren

beam_on Turns oscilloscope beam on by setting

the Z-input to the oscilloscope (Port B

Bit7) to a logic 0 (0V)

beam_off Turns oscilloscope beam on by setting

10

the Z-input to the oscilloscope (Port B

Bit7) to a logic 1 (5V)

plot_outline Plots an outline on the oscilloscope. It

shows all the extreme points plot-able

by the system on the oscilloscope and it

shows a small line of radius 10 pixels at

an angle corresponding to global

variable angle, indicating the direction

the sensor is pointing

For radar and profiler modes it displays

two lines of radius 64, one at 44 degrees

and one at 136 degrees indicating the

sweep-able region

beam_on

beam_off

get_coords (angle, radius)

plot_point

init_vector_table Initialises the vector table, which the

processor uses to call interrupt servicing

routines when the keypad or the clocks

generate an interrupt

init_ports Sets it such that PortA is used for input

(ADC), PortB is used for output (Z and

X inputs for the oscilloscope) and PortC

is used for output (speaker, servo motor

and oscilloscope-Y inputs)

init_angle0 Sets angle to 0 degrees, loads

appropriate reload values into timer0,

enables it, gives the servo ample time

(using delay_servo_full) to rotate to 0

degrees and then disables timer0

enable_servo_timer

servo_delay_full

disable_servo_timer

init_angle44 Sets angle to 44 degrees, loads

appropriate reload values into timer0,

enables it, gives the servo ample time

(using delay_servo_full) to rotate to 44

degrees and then disables timer0

enable_servo_timer

servo_delay_full

disable_servo_timer

delay_servo_full Produces a just about long enough delay

for the servo to rotate a large angle (>

90 degrees)

delay_servo_short Produces a just about long enough delay

for the servo to rotate a large angle (< 5

degrees)

delay_keypad Produces a just about long enough delay

required for a character to appear on the

LCD

display_menu Displays the main menu options on

LCD

display_radar_mode Displays “Radar Mode” on LCD

display_profiler_mode Displays “Profiler Mode” on LCD

display_tracker_seekin

g

Displays “Tracker-Seeking” on LCD

display_tracker_locke

d

Displays “Tracker-Locked” on LCD

11

display_rotating Displays “Rotating Back” on LCD

display_object Displays “Object Detected” on LCD

Global Variables

Since this a low level language, all variables used were global. They were declared as having

specific memory locations at the start of the program in such locations that they did not overlap

with any part of the program or loop up tables in memory.

Variable Name Purpose Modules used in

angle Stores the current angle at which the sensor is

positioned in all modes or the angle of the

point being plotted on the screen.

radar

tracker

profiler

increase_angle3

decrease_angle3

increase_angle

decrease_angle

rotate_to_angle

get_coords

display_angle_distance

distance Stores the current distance of the object being

detected in front of the sensor

get_coords

display_angle_distance

radar

tracker

profiler

objectdistance Stores the distance between the centre of the

last object detected and the sensor in radar

mode

radar

objectangle Stores the angle at which the centre of the last

object detected was in radar mode.

radar

middistance Stores the distance at which the object was

previously in tracker mode

tracker

midangle Stores the angle at which the centre of the

object being tracked was last detected in

tracker mode

tracker

register d Temporarily holds the value of reload register

high for the servo timer (timer 0)

clock_timer_toggle

rotate_to_angle

register e Temporarily holds the value of reload register

low for the servo timer (timer 0)

clock_timer_toggle

rotate_to_angle

radius While converting polar to cartesian co-

ordinates through the get_coord procedure,

radius is used the parameter

radar

tracker

profiler

get_coords

x_coord Stores the x-coordinated of last point whose

co-ordinates were converted from polar to

cartesian using get_coords

get_coords

radar

tracker

profiler

display_angle_distance

plot_point

12

y_coord Stores the x-coordinated of last point whose

co-ordinates were converted from polar to

cartesian using get_coords

get_coords

radar

tracker

profiler

display_angle_distance

plot_point

mode Stores the mode that the program is now

running (1, 2 or 3). When any key is pressed

on the keypad the value of mode is changed

accordingly.

menu

tracker

profiler

radar

Basic Overview of Each Mode of Operation

Radar Mode

The radar module works by first setting the angle to 45 degrees and allowing the motor enough

time to rotate to that angle. From then on it takes distance readings at each angle (incrementing

and rotating to the next angle) and then uses them to find out whether there is an object in the

vicinity. An object is often detected at two or more angles, however the actually angular position

of the object is one where the distance reading is the lowest but in radar mode we’d like an

object to show up only once on the scope.

So, when something is detected (i.e. distance < 60 cm), it is treated as the start of the object

(ObjectAngle and ObjectDistance are set to current angle and distance), and for the next

subsequent angles the object’s angle and distance are updated in case the distance is less than

what it was at the earlier angle (i.e. if distance < ObjectDistance reset ObjectDistance and

ObjectAngle to current ones). After nothing is detected once again, the distance and angle of the

object are displayed on the LCD and oscilloscope (using ObjectAngle and ObjectDistance which

are subsequently set to 0 and 64 respectively, to allow the detection of a new object) and a sound

is made on the speaker. After reaching 135 degrees, the radar procedure simply starts again at 45

degrees and does the sweep again. However, it keeps checking if the mode has been changed (by

the keypad_int procedure which services interrupts from the keypad updating the mode), in

which case it returns to the main menu.

Module Radar
Repeat

 Call init_angle45 # set servo to start sweep at 45degrees

 Call enable_servo_timer

 Call servo_delay_full

 Call disable_servo_timer

 ObjectDistance = 64 # initialising last object detected at infinity

 Repeat

 Call enable_servo_timer

Call delay_servo

Call get_distance # get distance and put it in (distance)

 Call display_angle_distance # lcd displays angle,

distance etc.

 Call plot_outline # show sweep-able region

13

If distance < ObjectDistance then

 # new centre of object found

 ObjectDistance = distance

 ObjectAngle = angle

End if

If distance > 60 and ObjectDistance < 60 then

if there is a blank space means end of object

show details on object detected

 Tempangle = angle

 distance = ObjectDistance

 angle = ObjectAngle

 call display_angle_distance

 call get_coords(angle, distance)

 call plot_point(x_coord, y_coord)

 call beam_on

 call make_sound

 # reset object details to infinity

 ObjectAngle = 0

 ObjectDistance = 64

 Angle = Tempangle

 End if

Call increase_angle # angle = angle + 1

 Until angle > 135 or mode <> 1

Until mode <> 1

End Radar

Profiler Mode

The profiler mode works very similarly to the radar mode, starting a sweep by rotating first to 45

degrees and then incrementing the angle by two while taking distance measurements on each

angle. However, at each angle it also shows the angle, distance, x and y coordinates on the LCD

display and plots these co-ordinates on the oscilloscope. It stores the x-coordinate and y-

coordinate at each particular angle in two separate arrays using the angle as the offset. It also

makes a sound at each angle at a frequency dependent on the distance reading. After its done

sweeping to 135 degrees, it then shows the profile of the object scanned. This is done by the

module show_profile, which simply takes out x and y coordinates out of the two arrays, starting

the offset at 45 and plots each point, each time increasing the offset by 1 until it reaches 135 and

then it starts again from 45 and keeps looping around, effectively showing the “profile” of the

object on the oscilloscope screen.

Module Profiler
 Call init_angle45 # set servo to start sweep at 45degrees

 Call enable_servo_timer

 Call servo_delay_full

Call disable_servo_timer

Repeat

Call rotate_to_angle

Call get_distance # calculate distance and put it in variable

distance

 Call display_angle_distance

 Call plot_outline

14

if distance < 60 then # stores oscilloscope co-ordinates in

arrays if distance is valid

Call get_coords(angle, distance)

Call plot_point(x_coord, y_coord)

Call make_sound

x_coords(angle) = x_coord

y_coords(angle) = y_coord

 else

 x_coords(angle) = 0

 y_coords(angle) = 0

End if

Call increase_angle (angle = angle + 1)

Until angle > 135 or mode >< 3

Repeat # keep showing profile until mode changed via keypress

 Call show_profile

Until mode >< 3

End Radar

Module show_profile

 Call plot_outline # display sweep-able region on scope

 angle = 45 # start showing points from that at 45d

 Repeat

show all points stored in x_coords and y_coords unless they’re blanks

x_coord = x_coords(angle)

y_coord = y_coords(angle)

If x_coord > 0 and y_coord > 0 then

Call plot_point(x_coord, y_coord)

End if

 Call increase_angle (angle = angle + 1)

 Until angle > 135

 Call plot_outline

End show_profile

Tracker Mode

The tracker mode first uses a similar code as the radar (which I prefer to call a seeker) to sweep

starting at 0 degrees and stops when it finds an object at 30cm (that is the operational range I set

for the tracker).

Then it sets MidDistance and MidAngle as current distance and angle respectively. It then adds

three degrees to the angle, rotates to the right and takes a new distance reading, if this distance is

less than MidDistance (indicating the object has moved to the right) it updates MidDistance and

MidAngle with current values. Otherwise, it subtracts three degrees from MidAngle, rotates to

the left and takes a new distance reading, and then updates MidDistance and MidAngle if this

distance reading is less than MidDistance (i.e. object has moved to the left). Another little

enhancement to the tracker is that once it sees that the object is moved to the left, the next time it

first checks to the left and the same thing when the object has moved to the right. This is very

15

sensible since we can assume the object would move in the same direction more often than

change direction.

It keeps looping around like this until it sees that the object is no longer anywhere in that 6

degree vicinity, i.e. MidDistance > 60. In this case, it loops back to the seeker part and finds the

object again before tracking it. It makes a sound if the object is within 30cm, or else it just keeps

quiet.

Module tracker

Repeat

Seeker Part locates an object first within 30cm

Repeat

 Call init_angle0 (angle = 0)

 Call servo_delay_full

 Repeat

Call rotate_to_angle

Call get_distance

 Call display_angle_distance

 Call plot_outline

 call get_coords(angle, distance)

 call plot_point(x_coord, y_coord)

 Call increase_angle3 (angle = angle + 3)

 Until angle > 180 or mode <> 2 or distance < 30

Until mode <> 2 or distance < 30

Seeker ends when an object is located at less than 30cm

Call decrease_angle3 (angle = angle – 3)

MidAngle = angle # set current angle, distance as mid values

MidDistance = distance

Repeat

 call get_distance

 angle = MidAngle

 Middistance = distance

Call display_angle_distance

 If distance < 30 then Call make_sound

 Call plot_outline

 call get_coords(angle, distance)

 call plot_point(x_coord, y_coord)

 If angle < 178 then

call increase_angle3 #checking right

 call rotate_to_angle(angle)

 call get_distance

End if

 If distance < MidDistance then

 MidAngle = angle #object moved right

 Else

 If angle > 2 then

 Repeat

angle = MidAngle #checking left

 decrease_angle3

 call rotate_to_angle

16

 call get_distance

 If distance < MidDistance then

 MidAngle = angle #moved left

 Middistance = distance

Call display_angle_distance

 If distance < 30 then Call make_sound

 Call plot_outline

 call get_coords(angle, distance)

call plot_point(x_coord, y_coord)

 Else

 angle = MidAngle #reset angle

 rotate_to_angle

 End if

 Until distance > MidDistance #keep checking left until

object no longer in left

End if

 End if

Until middistance > 60 or mode <> 2

 Until mode <> 2

End tracker

PseudoCode for Other Important Modules

Module rotate_to_angle (angle)

sets appropriate reload values into timer 0 for angle and then enables timer 0 for long

enough for a short rotation (1-3 degrees)

 timer0_reload_high = reload_high_table(angle)

 timer0_reload_low = reload_low_table(angle)

 call enable_timer0

 call servo_delay

 call disable_timer0

End rotate_to_angle

Module make_sound

outputs a wave to speaker to make a sound with frequency dependent on distance/ADC value

 Temp = ADC_Data

 Temp = Temp OR 0x10

 # Or with 0x10 otherwise too small a period would cause too frequent interrupts and

cause the program to behave abnormally

 timer1_reload_high = 0

 timer1_reload_low = Temp

 call enable_speaker_timer

 call delay_sound

 call disable_speaker_timer

End make_sound

Module display_bin_to_dec (number)

17

 # displays a binary number put into number as a 3 digit decimal number on the lcd

 H = 0

 # to find hundreds digit keeps subtracting hundred from number until number < 100

 Repeat

 number = number – 100

 H = H+1

 Until number < 100

 H = H-1

 If H > 0 then

 A = H + 0x30

 # 0x30 is 0 in ASCII, 1 is 0x31 and so on.

 Output_to_LCD(A)

 Call delay_lcd

End if

 H = 0

 # to find tens digit keeps subtracting ten from number until number < 10

 Repeat

 number = number – 10

 H = H+1

 Until number < 10

 H = H-1

 A = H + 0x30

 Output_to_LCD(A)

 Call delay_lcd

 # whatever is left is the units digit

 H = number

 A = H + 0x30

 Output_to_LCD(A)

 Call delay_lcd

End display_hex_to_decimal

Module display_angle_distance (angle, distance)

 # Displays current angle, distance, x-coordinate and y-coordinate on LCD screen (uses

display_bin_to_dec to convert these numbers)

 Call display_hex_to_decimal(angle)

 Output_to_LCD(“o ”)

 If distance <= 60 then

 Call display_hex_to_decimal(distance)

 Output_to_LCD(“cm ”)

 Call get_coords

 # x_coord and y_coord hold oscilloscope co-ordinates, the x_coord needs to be

subtracted/added from 64 to give cartesian co-ordinates

 If x_coord <= 64 then

 Output_to_LCD(“-“)

 x_coord = 64 – x_coord

 else

 x_coord = x_coord - 64

 end if

 Call display_hex_to_number(x_coord)

18

 Output_to_LCD(“,“)

 Call display_hex_to_number(y_coord)

 End if

End display_angle_distance

Module get_coords(angle, radius)

 # converts polar co-ordinates to oscilloscope co-ordinates

 x_coord = cosine_table(angle) x radius

 if angle < 90 then

 x_coord = 64 - x_coord

 else

 x_coord = 64 + x_coord

 end if

 y_coord = sine_table(angle) x radius

End get_coords

Module get_distance

 # reads in IR sensor from ADC and converts it to distance. Takes 4 readings and does

average for greater accuracy

 ADCSum = 0

 For I = 1 to 4

 ADCSum = ADCSum + Input_from_ADC

Next

 distance = distance_table(ADCSum / 4)

End get_distance

19

DESIGN/IMPLEMENTATION DETAILS AND ALTERNATIVES
As I previously discussed briefly in the introduction, our main objective was to keep the

hardware as simple as possible, not only because it is simply easier for us to put together but it

also meant that the entire system would not break because of a simple mistake in wiring.

Input/Output
We decided to use the ports to perform all I/O operations. The good thing was that all these ports

have dedicated data buses (or so to speak), which would mean they could be directly connected

to each of the devices they are driving. So, there would be no need of lots of wires coming out of

the data bus going into each of the devices. If we had used a discrete I/O scheme, we would also

need a decoder to enable each particular device at a time (so that’s one chip saved although I

realise that hardly matters).

One major disadvantage of using just the three ports is that, we only had 24 bits to share among

all the devices. The ADC definitely required an entire port since a port can only work as either

an input or output device but not both at the same time. We knew we needed a bit each for the

speaker, the timer and the oscilloscope’s Z-input. This left us with 13 bits to be shared between

the X and Y inputs. This actually made perfect sense. The X input would require twice the

number of bits as the Y inputs (consider a semicircle with a certain radius, it would be twice as

long horizontally than vertically). We decided to keep 7 bits (128 values) for X and 6 bits (64

values) for Y. I realise this might seem like a pretty low resolution but once again everything fell

in place perfectly. I had decided to keep the operational range of the system between 10 and

60cm since beyond that the voltages returned by the sensor via the ADC were highly inconsistent

(e.g. 70cm often would return the same voltage as 75cm). Even between 10 and 60cm, distances

returned were not very accurate. I would say the accuracy was at its best at 1cm division between

10 and 30cm and about 2cm from then on. So, having one pixel to represent 1cm on the

oscilloscope seemed like a very good idea, which is exactly what we had with 128 bits for X

(64cm or pixels on each side) and 64 bits for Y (64 bits or pixels).

Look-Up Tables and Arrays
Look up tables for were used for almost all conversions, simply because some functions were

simply too difficult to implement in assembly, or would take up too many clock cycles. Also, we

had enough memory to incorporate these lookup tables without having to worry about any of the

instructions or the stack overlapping with them (please see the appendix for these tables)

Lookup tables were also used to store ADC values that directly mapped to distances stored in

hex, since the function relating them seemed to be exponential and it would be very difficult to

do this conversion in assembly.

The values for high and low reload registers to be put into timer0 for each angle were also put in

two separate lookup tables. Even though the desired function reload = 2.844*angle + 208 could

be easily performed by the Z80 multiple instruction, it seemed like a waste of time doing this so

often when looking up a table is so much less time-consuming.

In the profiler mode two arrays are used to store x and y coordinates of IR readings converted

into oscilloscope co-ordinates by the get_coords module. The x and y arrays start at memory

locations FA00 and F900 respectively and use the angle as an offset. FA00 and F900 were

20

chosen since they are large enough to not overlap with any part of the program memory and

small enough not to overlap with the stack, which starts at FFFF.

Please see next topic on the use of lookup tables for finding cartesian co-ordinates from polar

ones. For a full list of lookup tables please see the appendices.

Conversion of Polar to Cartesian Co-ordinates
The procedure get_coords converted the polar co-ordinates stored in global variables angle and

radius to Cartesian co-ordinates and stored them in global variables x_coord and y_coord. These

were not really the orthodox polar or Cartesian co-ordinates, since the angle 0 started on the x-

axis and went clockwise. The Cartesian co-ordinates were actually oscilloscope co-ordinates, so

real (0,0) would be returned as (64,0) (since with a range of 0-128 on the x-axis, 64 is the

centre). The lookup tables stored sine and cosine for each angle in 8 bits in a fixed point format

(assuming the point is right before the first bit), e.g. Sine 90 = 1 is stored as FFh meaning

0.11111111, or Sin 30 = 0.5 is stored as 80h meaning 0.10000000. Only absolute cosine values

were put into the table, these were later taken into account when calculating oscilloscope co-

ordinates. The y-coordinate would simply be radius*sine(angle). This is done by putting the

value for the corresponding angle from the sine table in one register (h) and then multiplying it

with another register that contains the radius (l). The result is stored in hl, if we just ignore the

last 8 bits of the results (ignore register l and only take into account h), we have the result of the

multiplication without the fraction bit. The x-coordinate is calculated similarly by multiplication,

only afterwards the multiplication result is added to 64 for angles >= 90 or subtracted from 64

for angles < 90. The diagram below explains the geometrical calculations/methods used to

calculate the x and y inputs of the oscilloscope

21

The only alternative to storing the sine and cosine values in tables would be to actually have a

function that calculates sine and cosine values using Taylor expansions for sine and cosine which

(like almost everything else) are simply too difficult and time consuming to program in

assembly. There was also the incredibly insane idea of using two dimensional tables (one each

for sine and cosine) which mapped distances and sine/cosine values to their multiplicands (or the

Cartesian co-ordinates), however we were not given “that much” memory to work with.

Radar
I faced one particular problem when detecting objects in radar mode. The cylindrical tubes we

were provided with gave proper readings of distances only the sensor detected the centre of the

tubes. E.g. an object at 20cm and 90 degrees, would be read so only at 90 degrees, however at 92

or 88 degrees (which are the circular edges of the tube), a distance reading of 50 cm might be

returned. So for two objects picked up during a sweep, when points were plotted on the

oscilloscope they ended up like

 when you would expect .

22

The ideal situation would be to show a dot each for each object detected. This obviously was a

software flaw. I had to rewrite the radar module such that, once something is detected < 60cm, it

is treated as the beginning of the object and its angle and distance are stored in variables

ObjectAngle and ObjectDistance respectively (which were initialised to 0 and 60 at the start of a

sweep). As subsequent points of the object are detected, ObjectAngle and ObjectDistance are

updated if the current distance reading is less than ObjectDistance, such that ObjectDistance

finally stores the nearest distance and ObjectAngle thus holds the angle at which the centre of the

object is located. When a reading >=60cm is detected again, we know that is the end of the

object and thus the co-ordinates of the object are plotted on the scope and displayed on the LCD

(using ObjectDistance and ObjectAngle, which are then reset to 64 and 0 respectively, allowing

the detection of a new object). So, in the end the oscilloscope display looked like this

Speaker
We also had a major problem getting the speaker working. The speaker was set such that a

square wave of frequency dependent on the ADC value was being outputted to bit6 of PortC.

However this did not make any sound when the speaker was connected. I checked the output of

the bit6 using a probe on the oscilloscope to discover that the waveform was well within the

audible frequency range. Strangely enough, when I wrote a separate procedure to test the

speaker, it worked perfectly. My partner was having similar problems and his test procedures

worked perfectly too but the speaker stopped working when it was integrated into the main

program (for the radar, tracker or profiler). It later occurred to us that it may be because, only

one chip is used to drive all the ports, all of which are used in the main program but not in our

test speaker programs. Since the speaker had a high impedance and other bits of all the ports

were being set to 5Vs at the same time, the output was simply not powerful enough to drive the

speaker. But then, we had absolutely no idea how to solve this problem. This is when we had a

stroke of genius. I don’t remember which one of us had this brilliant idea, I would like to think it

was my idea though, which was to ask the lab technician Ron what could be done about this. He

suggested putting in a capacitor in series with the speaker and that worked perfectly, we were

finally getting a nice smooth sound quite distinct over different distance readings. We really

owed Ron for this one and we also owe him for being very understanding when we somehow

managed to blow up the CMOS chip that drives the ports (in a completely unrelated incident

when simply everything stopped working and I had no idea why until later I found out that the

ports were not responding at all).

23

TESTING AND EVALUATION
As you can see a more or less bottom up approach was used to put the system together. Each

component was first tested separately using separate test programs and then the entire program

(i.e. each of the operation modes) was tested later.

Testing separate components

I/R Sensor Testing

As explained earlier, the sensor was calibrated by putting an object at distances between 10 and

60cm at every 1cm and then taking reading the value given by the ADC (I had initially used

LEDs to display these values, but later I wrote a program which displayed the value in hex on the

LCD display). Three readings were taken at each distance and the average was taken, forming a

ADC reading-to-distance table (please see tables in appendix). A test procedure was written to

check whether this works by simply incorporating the table into this test program and then using

the get_distance module (see Software modules) to convert the ADC readings into distances,

which were displayed on the LCD. I placed objects at different distances and took down values

the LCD showed and checked whether the distance displayed was the same as the actual distance

from the sensor the object was placed at. I was very happy to see these readings were nearly

perfect between 10 and 30cm, had an error of +/-1 from 30-40cm, +/-2 from 40-50 cm and about

+/-4 from 50-60cm.

The following table shows the calibration readings for the IR sensor

Distance(cm) Reading1 Reading2 Reading3 Average Adjusted

9 F3 F6 F9 F6

10 E0 E4 E5 E3 E3

11 D1 D0 CC CF CF

12 C2 C0 C1 C1 C1

13 B0 B3 B0 B1 B1

14 A2 A5 A5 A4 A4

15 9B 97 99 99 99

16 91 92 8D 90 90

17 86 89 89 88 88

18 80 81 85 82 82

19 7C 7E 7A 7C 7C

20 77 74 74 75 75

21 73 71 6C 70 70

22 6A 6D 6D 6C 6C

23 69 67 6B 69 69

24 61 65 66 64 64

25 61 5F 60 60 60

26 5D 5F 5B 5D 5D

27 5A 5D 5A 5B 5B

28 58 57 59 58 58

29 54 57 54 55 55

30 52 53 54 53 53

24

31 51 50 4F 50 50

32 4E 4E 4B 4D 4D

33 4A 4C 4B 4B 4B

34 49 4B 47 49 49

35 47 49 45 47 47

36 48 44 43 45 45

37 43 44 42 43 43

38 3F 42 42 41 41

39 42 40 3E 40 40

40 3F 3D 41 3F 3F

41 3E 3F 3D 3E 3E

42 3C 3E 3D 3D 3D

43 3A 3D 3D 3C 3C

44 3D 3A 3A 3B 3B

45 3A 3C 38 3A 3A

46 36 37 3B 38 38

47 35 38 38 37 37

48 37 34 34 35 35

49 33 33 36 34 34

50 31 36 31 32 33

51 32 32 35 33 32

52 32 33 33 32 31

53 31 2F 30 30 30

54 2F 2E 33 30 2F

55 2F 2D 2D 2D 2E

56 2E 2A 32 2E 2D

57 2A 2B 2D 2B 2C

58 2B 2C 2A 2B 2B

59 2A 29 28 29 2A

60 28 2B 2B 2A 29

61 26 28 2A 28 28

62 29 27 26 27 27

63 28 26 27 27 26

64 25 25 26 25 25
(The average readings were later adjusted to form an ADC-to-Distance table since at some

distances e.g. 53 and 54 the average ADC reading seemed to be the same at 30h, so I had

adjusted 54 to be 2Fh instead. Please see Appendix C for the final lookup table made from this

data. Please note that my partner and I calibrated the sensor together, so we are very likely to

have almost the same distance look-up table)

25

Tests run with different distances to check if sensor calibrated properly
Actual

Distance
Distance
Reading1

Distance
Reading2

Distance
Reading3

Distance
Reading4

Distance
Reading5

Average
Distance

Max Error
+/-

Standard
Deviation

10 10 10 10 10 10 10.00 0 0.000

11 11 11 11 11 11 11.00 0 0.000

12 12 12 12 12 12 12.00 0 0.000

13 13 13 13 13 13 13.00 0 0.000

14 14 14 14 14 14 14.00 0 0.000

15 15 15 15 15 15 15.00 0 0.000

16 16 16 16 16 16 16.00 0 0.000

17 17 17 17 17 17 17.00 0 0.000

18 18 18 18 18 18 18.00 0 0.000

19 19 19 19 19 19 19.00 0 0.000

20 20 20 20 20 20 20.00 0 0.000

21 21 21 21 21 21 21.00 0 0.000

22 22 22 22 22 22 22.00 0 0.000

23 23 23 23 23 23 23.00 0 0.000

24 24 24 24 24 24 24.00 0 0.000

25 25 25 25 25 25 25.00 0 0.000

26 26 26 26 26 26 26.00 0 0.000

27 27 27 27 27 27 27.00 0 0.000

28 28 28 28 28 28 28.00 0 0.000

29 29 29 29 29 29 29.00 0 0.000

30 30 30 30 30 30 30.00 0 0.000

31 31 31 31 31 31 31.00 0 0.000

32 32 32 32 32 32 32.00 0 0.000

33 33 33 34 33 33 33.20 1 0.400

34 34 35 34 33 34 34.00 1 0.632

35 35 34 34 34 35 34.40 1 0.490

36 36 36 36 36 36 36.00 0 0.000

37 37 37 38 37 38 37.40 1 0.490

38 38 38 38 37 39 38.00 1 0.632

39 39 39 40 40 38 39.20 1 0.748

40 41 40 41 39 40 40.20 1 0.748

41 41 41 42 42 42 41.60 1 0.490

42 42 41 43 42 41 41.80 1 0.748

43 43 45 42 42 44 43.20 2 1.166

44 44 44 43 46 45 44.40 2 1.020

45 46 45 45 45 45 45.20 1 0.400

46 46 47 46 45 47 46.20 1 0.748

47 45 47 48 47 47 46.80 2 0.980

48 49 48 48 48 50 48.60 2 0.800

49 49 49 50 49 50 49.40 1 0.490

50 50 50 50 50 51 50.20 1 0.400

51 51 51 52 51 51 51.20 1 0.400

52 52 53 50 52 53 52.00 2 1.095

53 53 53 55 52 50 52.60 3 1.625

26

54 54 55 54 52 55 54.00 2 1.095

55 56 55 57 54 57 55.80 2 1.166

56 57 53 58 56 57 56.20 3 1.720

57 58 60 56 56 59 57.80 3 1.600

58 59 58 60 57 59 58.60 2 1.020

59 60 61 57 62 59 59.80 3 1.720

60 62 59 63 60 59 60.60 3 1.625

61 64 58 58 62 57 59.80 4 2.713

62 62 N 59 60 63

63 64 N 62 N N

64 N 60 N N 62
(N = Nothing detected)

Servo Motor Testing

The increase/decrease angle procedures along with the rotate_to_angle procedures were used to

rotate the sensor to different angles. The rotate_to_angle procedure uses the reload lookup tables

to put an appropriate value into the timer such that the required pulse is produced. I tried several

angles and then later sweeps (slowly increasing the angle after a short period of time) to check

whether the motor worked properly and whether in fact the lookup tables generated using linear

regression was right and as expected everything was fine. Finally, after each sweep between

certain angles, I made it rotate back to its start angle and repeat the sweep.

Speaker Testing

The speaker was initially tested by feeding its timer different reload values just to check whether

it made a sound, and later a speaker test was added to the IR sensor test program, such that the

speaker made a sound depending on the distance read (this was done by putting the ADC value

read into the speaker timer’s reload register). This made a very distinct sound at different

distances however the program seemed to crash when the object was too far away, this was

because when the ADC value was too small, the frequency was too high and the speaker timer

generated too many interrupts, thus stopping the rest of the program from executing. This

problem was fixed by doing an OR 0x10 on the ADC value before putting it into the speaker

timer.

Oscilloscope/Cartesian Coordinates Testing

I started off by first writing a procedure that made simple shapes such as boxes or lines appear

on the oscilloscope using preset x and y co-ordinates (using the plot_point procedure). The z-

input was checked by switching the beam off for certain points and later seeing whether these

points appeared on the oscilloscope and indeed they did not (or at least they appear very lightly).

The get_coords procedure converted polar co-ordinates to cartesian co-ordinates (rather polar to

oscilloscope co-ordinates), by looking up the sine and cosine tables for each angle and then

multiplying them with distances. I wrote a simply test program which stored these x and y

coordinates in memory and checked whether get_coords works by running the program on the

ZIM emulator for the Z80. I then wrote the display_angle_distance which displayed current

angle, distance, x and y coordinates on the LCD displays and this seemed fine for all test values

to. I later used plot_point to plot some points on the oscilloscope. A more comprehensive test

was carried out I suppose, when I wrote a procedure that starts with a certain distance and plots

27

points for angles 0 to 180 degrees and then increments the distance, plot points for angles 0 to

180 degrees and so on. This gave images of semicircles of increasing radii on the oscilloscope

(with the beam moving clockwise), which is exactly what we would expect.

LCD details of some points while plotting semi-circles
00▀ 10cm -10,00

30▀ 10cm -08,05

60▀ 10cm -05,09

90▀ 10cm 00,10

120▀ 10cm 05,09

150▀ 10cm 09,05

180▀ 10cm 10,00

00▀ 25cm -25,00

20▀ 25cm -23,08

40▀ 25cm -19,16

60▀ 25cm -12,22

80▀ 25cm -04,25

100▀ 25cm 05,25

120▀ 25cm 13,22

140▀ 25cm 20,16

160▀ 25cm 24,08

180▀ 25cm 25,00

00▀ 40cm -40,00

15▀ 40cm -38,10

30▀ 40cm -34,20

45▀ 40cm -28,28

60▀ 40cm -20,35

75▀ 40cm -10,39

90▀ 40cm 00,40

105▀ 40cm 11,39

120▀ 40cm 20,35

135▀ 40cm 29,28

150▀ 40cm 35,20

165▀ 40cm 39,10

180▀ 40cm 40,00

00▀ 45cm -45,00

10▀ 45cm -44,08

20▀ 45cm -42,15

30▀ 45cm -38,22

40▀ 45cm -34,29

50▀ 45cm -28,34

60▀ 45cm -22,39

70▀ 45cm -15,42

80▀ 45cm -07,44

90▀ 45cm 00,45

100▀ 45cm 08,44

110▀ 45cm 16,42

120▀ 45cm 23,39

130▀ 45cm 30,34

140▀ 45cm 35,29

150▀ 45cm 40,22

160▀ 45cm 43,15

170▀ 45cm 45,08

180▀ 45cm 45,00

00▀ 60cm -60,00

45▀ 60cm -42,42

90▀ 60cm 00,60

135▀ 60cm 43,42

180▀ 60cm 60,00

00▀ 55cm -55,00

18▀ 55cm -52,17

36▀ 55cm -44,32

54▀ 55cm -32,44

72▀ 55cm -16,52

90▀ 55cm 00,55

108▀ 55cm 18,52

126▀ 55cm 33,44

144▀ 55cm 45,32

162▀ 55cm 53,17

180▀ 55cm 55,00

(▀ = Degree Sign in LCD font)

System Testing
Each of the modes were put together first and test individually.

Radar Mode

This was a very simple test. Some tubes were placed in front of the sensor and the program was

run to see if the oscilloscope gave the proper positions of the objects and whether it gave just one

dot on the scope for one object. I realise the specifications required the radar mode to pick up at

least 16 targets in the sweep-able angular range, but unfortunately we were provided with just

one tube to test our programs on. I used my highly persuasive skills to borrow some others from

other benches and improvised by using some smarties tubes. At a far enough distance, the radar

picked up ten distinct objects. Since the detection of an object requires there to be a black space

between them, and a sweep-able area of 90 degrees at 60cm, this gives us a circumference of

94cm. The side of the tube visible to the sensor is roughly 3cm (i.e. half is circumference). This

would allow the detection of at least 20 objects, provided there is enough blank space between

two objects placed next to each other. The sounds made by the speaker were quite decent and it

corresponded to the distance between the object and the sensor.

28

Improvising using Smarties tubes. This would no doubt make a very good Smarties commercial.

The pictures below show the positioning of three objects in radar mode and how they appeared

on the oscilloscope and LCD display during a sweep

29

30

Tracker Mode

The first part of the tracker test was simply to check whether the motor properly swept until it

locked on to an object. Once that proved successful, the actual tracker bit was tested and it

seemed to follow the object around quite well (provided it moved slow enough at around 2cm/s).

I then moved the object out of range several times and checked whether it made the tracker loop

back to the zero degree position and start seeking for the object again. I had one problem though.

I had initially forgot to put in checks for the extreme angles 0 and 180 degrees, so everything just

went haywire when the object was around those position since then the new reload values were

no longer on the reload tables, so a very strange input would be put into the servo motor. I made

it so that there were checks at 0 and 180 degrees such that in those instances the tracker would

not check to the left or right respectively. The sound effects produced were quite satisfactory as

well.

31

Target placed in front of sensor in tracker mode

Oscilloscope showing position of target LCD displaying co-ordinates of target

Profiler Mode

The profiler was tested with differently shaped objects placed in front of the sensor and then

checking what kind of image was formed on the oscilloscope. The distances on the LCD display

also came out more or less right. Many different shapes were used to check the image formed on

the screen and the shapes more or less coincided, as well as can be expected from our particular

resolution and our sensor. The speaker makes distinct sounds at distinct distances, so the sound

gave the listener a rough idea of the shape of the object. For example, a concave object would

32

give a more or less same sound through out but a straight object would start off with a high

frequency, then get lower and then get higher again.

The following are some pictures of objects placed on the sensor and the profile shown on the

oscilloscope after a sweep.

Object Placed Profile Displayed

33

Full System Testing

All this required was to test whether all the modes worked when put in the same program file

and whether the menu itself worked. One major problem I faced was the overlapping of labels,

which often meant that even after I got rid of all duplicate label names, I had forgotten to change

the jump instructions accordingly, so often the tracker looped into the radar and vice versa until I

fixed all this. The system seemed to respond fine to all keypad entries, taking it to the

appropriate mode for keys 1-3 or back to the main menu for other keys.

Obviously really proud of the simplest hardware design in the lab

34

TECHNICAL SPECIFICATIONS
InfraRed Sensor

Operational Range 10-60cm

Distance Accuracy 10-30cm: Max Error +/-0cm, Standard Deviation: 0.00

30-40cm: Max Error +/-1cm, Standard Deviation: 0.41

40-50cm: Max Error +/-2cm, Standard Deviation: 0.81

50-60cm: Max Error +/-4cm, Standard Deviation: 1.19

Servo-Motor

Angle of sweep 0-180 degrees

Speed of rotation 0.20 seconds/degree

Radar Mode

Angle of sweep 45 to 135 degrees (every 1 degree)

Maximum Objects Detectable 20

Average Time for Full Sweep 25 seconds

Radar Range 10-60cm

Tracker Mode

Angle of sweep 0 to 180 degrees (every 3 degrees)

Tracker Accuracy +/-3 degrees

Seeker Range 10-30cm

Tracker Range 10-30cm

Maximum Speed Track-able 2cm/s

Profiler Mode

Angle of sweep 45 to 135 degrees (every 1 degree)

Average Time for Full Sweep 30 seconds

Profiler Range 10-60cm

Oscilloscope Display

Resolution 128*64

X-coordinates 128 discrete values (1 pixel per cm)

Y-coordinates 64 discrete values (1 pixel per cm)

LCD Display

Display size 16 characters per line * 2 lines

Accuracy of numbers displayed Dependent on IR sensor reading

Values correct to whole numbers (0 decimal places)

35

COSTING
Component Qty Purpose Unit Price £ Total Price £

Z80 CPU SBC

Board

1 The SBC Board with the Z80 Processor,

RAM chips, LCD, Keypad etc.

100.00 100.00

Servo Motor 1 Rotates IR sensor 7.50 7.50

IR Sensor 1 Infra-red sensor to detect objects 9.00 9.00

8 ohm Speaker 1 To produce required sound effects 3.38 3.38

DAC0832LCN

D/A Converter

2 1 – Perform D/A conversion for X axis

2 – Perform D/A conversion for Y axis

2.74 5.48

LF356N

Op Amp

2 To amplify analogue signals for each axis

on each D/A converter

0.63 1.26

ADC0804LCN

A/D Converter

1 To convert analogue voltage read by the IR

sensor to be read

2.70 5.40

Capacitors 5 For speaker, ADC, Z-input, smoothing

opamps outputs

0.11

0.55

Resistors 6 For providing reference voltages to ADC

and DACs

0.05 0.30

Wires, misc. For connecting components 1.00 1.00

 TOTAL £ 133.87

(Please note these costs are for putting together one unit of the system, however if it were to be

mass-produced then the costs per unit would be slightly less)

36

LIMITATIONS AND FUTURE IMPROVEMENTS
As far as limitations go, the most apparent one would probably be the resolution of our

oscilloscope display i.e. 128*64. The most obvious reason for doing that was to save time (and a

chip) so that we could only use the ports for I/O. Most other teams were using a 256*256

resolution. However I believe this is unnecessary because of the inaccuracy of the IR sensor. An

improvement I would suggest is the use of a more accurate/sensitive IR sensor such that

distances would be calculated with greater accuracy and then a higher resolution could be used to

give more near to exact positions of objects on the oscilloscope. On top of that, if a 16-bit ADC

were used to encode the IR-sensor data, the distance measurements would have greater detail

(perhaps in millimetres).

One problem with sharing the same ports for timers and the y-axis meant that while the timers

were running it was not possible to change the position of points on the oscilloscope screen. This

meant that our screen was slightly more flickering than that of other teams. This is one reason

why we really should have implemented a discrete I/O scheme, leaving the timer bits separate

from anything else.

A better IR sensor would also increase the operational range of all our modes.

At the moment, the radar mode only shows objects as it sweeps but does not store the locations

of the objects. It does however give a nice effect of an object popping up on the oscilloscope and

then fading away as the next object is detected. But I suppose, if I stored the positions of all

objects in memory and then displayed the previously scanned objects in the same sweep while

scanning, it would look much more sophisticated and give more information.

Among other things, I would have also preferred to have a faster servo-motor, which would

mean faster sweeps for the radar and profiler modes, and the tracker mode would also be able to

track faster moving objects.

I would also have liked to allow the user to manually enter angle of sweeps, acceptable distances

ranges etc. for each of the modes using the keypad.

Using some fancy vector graphics, it would have been nice to show the angle, distance etc. on

the oscilloscope display itself as graphics. All this would require is to have bitmap images of

numbers and then showing them on the screen starting at a particular points of it.

Most of these suggested improvements are base on what I saw done by other teams doing the

MCP course. Despite all the limitations of our system, I think I can safely say that ours is

probably the simplest and cheapest hardware solution and I do feel rather smug about what I

have put together.

37

APPENDIX A – THE CODE
jp main

.space 29

vector_table: # setting up vector table for servicing interrupts

.int 0x0000 # interrupt 0 unused

.int keypad_int # interrupt 1 generated by keypad key press

.int servo_timer_toggle # interrupt 2 generated by timer0 (servo timer)

.int speaker_timer_toggle # interrupt 3 generated by timer1 (speaker timer)

################ MEMORY LOCATIONS DECLARED FOR VARIABLES, CONTROL REGISTERS ETC

################

lcd_out = 0xB9 # output for lcd screen in ASCII

keypad_in = 0xB4 # input from keypad

ADC = 0xB0 # port A connected to ADC

X = 0xB1 # port B connected to Z and X inputs

Y = 0xB2 # port C connected to servo, speaker and Y inputs

CSR = 0xB3 # command status register

rr_high0 = 0x0F # high reload register for timer 0 (controlling servo)

rr_low0 = 0x0E # low reload register for timer 0 (controlling servo)

rr_high1 = 0x17 # high reload register for timer 1 (controlling speaker)

rr_low1 = 0x16 # low reload register for timer 1 (controlling speaker)

TCR = 0x10 # timer control register - used to enable timers 0 & 1

TDR0 = 0x0C # lower byte of timer data register for timer 0

TDR1 = 0x14 # lower byte of timer data register for timer 1

IVLR = 0x33 # interrupt vector low register

ITCR = 0x34 # interrupt/trap control register

distance = 0xFC10 # stores current distance read

radius = 0xFC15 # radius in polar co-ordinates to be passed to procedure

get_coords as parameter

angle = 0xFC11 # stores current angle of servo or point being plotted

tangle = 0xFC12 # temporarily holds angle for conversion

number = 0xFC17 # number in binary to be passed to procedure

display_bin_to_dec as parameter

x_coord = 0xFC18 # holds x-coordinate of point converted from polar to

cartesian by get_coords

y_coord = 0xFC19 # holds y-coordinate of point converted from polar to

cartesian by get_coords

mode = 0xFC1A # stores current mode (1=Radar, 2=Tracker, 3=Profiler)

midangle = 0xFC35 # stores middle angle in tracker mode before checking left

or right

middistance = 0xFC80 # stores distance at the middle angle in tracker mode

objang = 0xFC26 # stores angle at which centre of last object in radar

mode was detected

objdis = 0xFC25 # stores distance at which centre of last object in radar

mode was detected

###

###########

main:

 call init_port # initialise ports such that A=input, B=output, C=output

 call init_vector_table # initialise vector table for interrupts

 ld a, 0x00 # sets mode to 0 (menu) initially

 ld (mode), a

main_menu:

38

 call clear # clear lcd screen

 call display_menu # lcd displays message showing which key to press for

which mode

menu:

 ei # enable interrupt to allow keys on pad being pressed and

mode being changed by keypad_int

 ld a, (mode) # loop around if mode=0

 cp 0x00

 jp z, menu

 ld a, (mode) # run radar-mode if mode=1

 cp 0x01

 jp z, radar

 ld a, (mode) # run tracker-mode if mode=2

 cp 0x02

 jp z, tracker

 ld a, (mode) # run profiler-mode if mode=3

 cp 0x03

 jp z, profiler

 jp menu

radar: # start of radar-mode

 call init_angle45 # set servo to start sweep at 45degrees

 call enable_servo_timer # run servo timer starting rotation

 call clear # clear lcd

 call display_rotating # lcd displays message saying servo rotating

 call delay_servo_full # allow servo enough delay to rotate to 45degrees

 ld a, 0x40 # initialising last object detected at 0x40

(infinty)

 ld (objdis), a

radar_loop:

 ld a, (mode) # if mode changed return to main menu

 cp 0x01

 jp nz, main_menu

 call clear # clear lcd

 call get_distance # calculate current distance and put it in

(distance)

 call display_radar_mode # lcd displays message indicating radar mode

 call display_angle # lcd displays angle of servo

 ld a, (distance) # if distance > 60 then there is no object detected

 cp 0x3C

 jp z, checkblank

 ld b, a # b = current distance

 ld a, (objdis) # a = previous central distance of current object

 cp b # prev distance - current distance

 jp c, checkblank

39

 ld a, (distance) # if current distance < previous distance

 ld (objdis), a # set new object distance and angle as current

values

 ld a, (angle)

 ld (objang), a

 jp next_angle

checkblank: # if there is a blank space means end of object

 ld a, (objdis) # if there was no previous object (object distance >

60) then rotate to next angle

 cp 0x3C

 jp nc, next_angle

 ld a, (angle) # temporarily stores angle in stack since calculations

affect it

 push af

 ld a, (objang) # get cartesian coordinates for (objang, objdis)

 ld (angle), a

 ld a, (objdis)

 ld (radius), a

 call get_coords

 call clear

 call display_object # lcd displays message saying objected detected

 call display_angle_distance # display objang, objdis, cartesian

coordinates on LCD

 call plotoutline # plot outline on oscilloscope showing sweep-able

region

 call plot_point # plots point using cartesian co-ordinates of object

detected

 call beam_on # leave oscilloscope beam on

 call make_sound # use speaker to make sound indicating detection of

object

 call plotoutline # plot outline on oscilloscope showing sweep-able

region

 call plot_point # plots point using cartesian co-ordinates of object

detected

 call beam_on # leave oscilloscope beam on

 pop af # restore value of angle

 ld (angle), a

 ld a, 0x40 # set object central distance as 64 (infinity), i.e.

no object being detected

 ld (objdis), a

 ld a, (angle) # if angle >= 135 re-run radar (rotate back to 45 and

sweep again)

 cp 0x87

 jp nc, radar

40

next_angle:

 call increase_angle # if angle < 135, increment angle and then rotate servo to

that angle

 call rotate_to_angle

jp radar_loop

tracker: # main module for tracker mode

 call clear

 call beam_off

seeker:

 call init_angle0 # set servo to start sweep at 0degrees

 call enable_servo_timer # run servo timer starting rotation

 call clear # clear lcd

 call display_rotating # lcd displays message saying servo rotating

 call delay_servo_full # allow servo enough delay to rotate to 45degrees

seeker_loop:

 ld a, (mode)

 cp 0x02

 jp nz, main_menu

 call clear # clear lcd screen

 call get_distance # calculate current distance and put it in

(distance)

 call display_tracker_seeking # lcd displays message indicating tracker

seeking

 call display_angle_distance # display current angle and distance read

 call plot_outline

 call get_coords

 call plot_point # plot current reading on oscilloscope

 call beam_on

 ld a, (distance) # if object located at distance<30 then go to

trackingmode

 cp 0x1E

 jp c, tracker_start

change_sangle:

 #check if angle is >= 180

 ld a, (angle)

 cp 0xB2

 jp c, next_sangle

 jp seeker # if angle >-180 then restart seeker from 0 degrees

next_sangle:

 call increase_angle3 # increase angle by 3

41

 call rotate_to_angle # run timer for enough time to allow rotation

jp seeker_loop

tracker_start:

 ld a, (angle) # store current angle and distance as middle angle and

distance

 ld (midangle), a

 call get_distance

 ld a, (distance)

 ld (middistance), a

right_check:

 ld a, (mode) # check if mode has been changed via keypad

 cp 0x02

 jp nz, main_menu

 ld a, (midangle) # rotate to current angle

 ld (angle), a

 call rotate_to_angle

 call get_distance # set current distance as mid distance

 ld a, (distance)

 ld (middistance), a

 ld a, (distance) # if mid distance >= 64 it means object has moved

out of range, so start seeking again

 cp 0x3F

 jp nc, tracker

 call clear # clears lcd

 call display_tracker_locked # display message saying tracker locked

 call display_angle_distance # display angle, distance, cartesian

coordinates

 call plotoutline # show sweep-able region on oscilloscope

 call get_coords # get oscilloscope co-ordinates for

midangle,middistance

 call plot_point # plot point showing current angle,distance on

oscilloscope

 call make_sound # make sound indicating distance from sensor

 call plotoutline # show sweep-able region on oscilloscope

 call get_coords # get oscilloscope co-ordinates for

midangle,middistance

 call plot_point # plot point showing current angle,distance on

oscilloscope

right:

 ld a, (midangle) # if angle >= 178 do not check right

 cp 0xB0

 jp nc, left

 add a, 0x03 # angle = midangle + 3

 ld (angle), a

 call rotate_to_angle # enable timer and allow servo time to rotate to

midangle+3

 call get_distance # read current distance into (distance)

 ld a, (middistance)

 ld b, a # b = middistance

42

 ld a, (distance) # a = rightdistance

 cp b # a-b = rightdis-middis

 jp nc, left # if rightdis>=middis then object has not moved to

right, so check left

 ld a, (angle) # if rightdis<middis then object moved to right, set

midangle to current angle and so check to the right again

 ld (midangle), a

 jp right_check

left: # checking if object moved to left

 ld a, (midangle) # if angle < 3 do not check left

 cp 0x03

 jp c, right_check

 sub 0x03 # angle = midangle - 3

 ld (angle), a

 call rotate_to_angle # enable timer, allow servo time to rotate to

midangle-3

 call get_distance # read current distance into (distance)

 ld a, (middistance)

 ld b, a # b = middistance

 ld a, (distance) # a = leftdistance

 cp b # a-b = leftdis-middis

 jp nc, right_check # if leftdis>=middis then object has not moved to

left, so check right

 ld a, (angle) # if leftdis<leftdis then object moved to right, set

midangle to current angle and so check to the right again

 ld (midangle), a

left_check:

 ld a, (mode) # if mode changed via keypad then return to main

menu

 cp 0x02

 jp nz, main_menu

 call clear # clears lcd

 call display_tracker_locked # display message saying tracker locked

 call display_angle_distance # display angle, distance, cartesian

coordinates

 call plotoutline # show sweep-able region on oscilloscope

 call get_coords # get oscilloscope co-ordinates for

midangle,middistance

 call plot_point # plot point showing current angle,distance on

oscilloscope

 call make_sound # make sound indicating distance from sensor

 call plotoutline # show sweep-able region on oscilloscope

 call get_coords # get oscilloscope co-ordinates for

midangle,middistance

 call plot_point # plot point showing current angle,distance on

oscilloscope

 jp left

profiler:

 call init_angle45 # set servo to start sweep at 45degrees

 call enable_servo_timer # run servo timer starting rotation

43

 call clear # clear lcd

 call display_rotating # lcd displays message saying servo rotating

 call delay_servo_full # allow servo enough delay to rotate to 45degrees

 ld a, 0x40 # initialising last object detected at 0x40

(infinty)

 ld (objdis), a

profiler_loop:

 ld a, (mode) # if mode changed return to main menu

 cp 0x03

 jp nz, main_menu

 call clear # clear lcd

 call get_distance # calculate current distance and put it in

(distance)

 call display_profiler_mode # lcd displays message indicating profiler mode

 ld a, (distance)

 ld (radius), a

 call get_coords # get cartesian coordinates for (angle, distance)

 call display_angle_distance # display angle, distance, cartesian

coordinates on LCD

 ########### Storing Profile ############# Stores points in cartesian co-

ordinates for each angle if something is detected. X-coordinates for each angle

stored in 0xFA00+angle and Y-coordinates in 0xF900+angle

 ld (distance), a # if nothing detected (distance>60) no point stored

 cp 0x3C

 jp nc, noppoint

 ld a, (angle) # Starting at location FA00 and using angle as offset

store x-coordinate for current angle

 ld l, a

 ld h, 0xFA

 ld a, (x_coord)

 ld (hl), a

 ld a, (angle) # Starting at location F900 and using angle as offset

store y-coordinate for current angle

 ld l, a

 ld h, 0xF9

 ld a, (y_coord)

 ld (hl), a

 call plot_outline # plot outline indicating sweep-able region

 call plot_point # plot current point on screen

 call make_sound # make sound indicating the distance read

 jp change_angle

 noppoint: # if distance>64, store the point as 0,0 which is not

plotted by show_profile

 ld a, (angle)

 ld l, a

 ld h, 0xFA

 ld a, 0x00

 ld (hl), a

44

 ld a, (angle)

 ld l, a

 ld h, 0xF9

 ld a, 0x00

 ld (hl), a

 ##########

change_pangle:

 ld a, (angle) # if angle < 135 then increment angle and keep sweeping

 cp 0x87

 jp c, next_pangle

 imager: # if angle > 135 show profile

 ei # allow mode to be changed via keypad interrupt

 call show_profile # display profile of object swept

 di

 ld a, (mode) # if mode changed go to main menu

 cp 0x03

 jp nz, main_menu

 jp imager

next_pangle:

 call increase_angle # if angle < 135, increment angle and then rotate servo to

that angle

 call rotate_to_angle

jp profiler_loop

keypad_int: # interrupt routine if key on keypad pressed, changes mode

according to key pressed

 in a, (keypad_in)

 ld a, 0x00 # initially set mode as 0 (menu-mode)

 ld (mode), a

 in a, (keypad_in) # read data from keypad indicating which key pressed

 cpl # converts keypad data into integers (1 for 1 pressed, 2

for 2 pressed, 3 for 3 pressed)

 sub 0x0F

 cp 0x00 # if key pressed is between 1 and 3, set mode to key,

otherwise leave mode as 1

 jp z, end_keypad_int

 cp 0x04

 jp nc, end_keypad_int

 ld (mode), a

end_keypad_int:

45

 ei

reti

clear: # clears LCD

 ld a, 0x01

 out (0xB8), a # sends command to LCD control to clear LCD

 call delay_servo_short # allows enough delay to clear screen

ret

make_sound: # uses speaker to make sound indicating current distance reading

 # puts in (ADC-data or 0x10) into reload registers so that frequency is

indicative of distance. Or 0x10 is done such that a too small ADC reading does not

give a very high frequency which may cause the program to behave abnormally due to

too many clock interrupts being generated

 ld a, 0x00

 out0 (rr_high1), a

 in a, (ADC)

 or 0x10

 out0 (rr_low1), a

 ei

 call enable_speaker_timer # speaker enabled

 call delay_speaker # give speaker enough time to make an audible sound

 di

 call disable_speaker_timer # speaker disabled

ret

delay_speaker: # delay procedure to give speaker enough time to make an audible

sound

 push bc

 ld bc, 0x0600 # do 600h nops

delay_speaker_loop:

 nop

 dec bc

 ld a, 0x00

 cp b

 jp nz, delay_speaker_loop

 pop bc

ret

servo_timer_toggle: # when servo clock interrupt occurs this toggles the servo-input

to produce required wave

 in0 a, (TCR) # required to be read to put down interrupt

 in0 a, (TDR0)

 #toggle servo bit to create pulse

 in a, (Y)

 xor 0x80

 out (Y), a

 ld a, d # d,e hold rr_high0 and rr_low0

 cpl

 ld d, a

 ld a, e

46

 cpl

 ld e, a # -de found in 1's complement form

 push hl

 ld h, 0x06

 ld l, 0x01

 add hl, de # next pulse should have period 600h-de, since -de is in

1C form 1 is added, so 601h-de performed

 ld d, h

 ld e, l

 pop hl

 out0 (rr_low0), e # new reload values put in to generate wave

 out0 (rr_high0), d

 ei

reti

speaker_timer_toggle: # when speaker clock interrupt occurs this toggles the

speaker-input to produce required wave

 in0 a, (TCR) # required to be read to put down interrupt

 in0 a, (TDR1)

 in a, (Y) # toggle speaker input to produce square wave

 xor 0x40

 out (Y), a

reti

beam_off: # turns oscilloscope beam off by setting portB bit7 to 1

leaving other bits unchanged

 in a, (X)

 or 0x80

 out (X), a

ret

beam_on: # turns oscilloscope beam on by setting portB bit7 to 0

leaving other bits unchanged

 in a, (X)

 and 0x7F

 out (X), a

ret

plotoutline: # plots outline indicating extreme x & y co-ordinates and sweep-able

region

 ld a, 0x00 # plot bottom leftmost point

 ld (x_coord), a

 ld (y_coord), a

 call plot_point

 ld a, 0x7F # plot top rightmost point

 ld (x_coord), a

 ld a, 0x3F

 ld (y_coord), a

 call plot_point

47

 ld a, 0x00 # plots top leftmost point

 ld (x_coord), a

 ld a, 0x3F

 ld (y_coord), a

 call plot_point

 ld a, 0x7F # plot bottom rightmost point

 ld (x_coord), a

 ld a, 0x00

 ld (y_coord), a

 call plot_point

 ld a, (angle) # temporarily stores current angle in tangle since angle

is used by procedures

 ld (tangle), a

 ld a, 0x00

 ld (radius), a

 ld a, 0x2B

 ld (angle), a

 ld a, (mode) # two lines at 45d and 135d are drawn to indicate sweep-

able areas for profiler and radar mode, but these are skipped for the tracker

 cp 0x02

 jp z, pointer

 ld b, 0x00

 ld c, 0x40

 downline: # draws a line at 45degrees (grad=-1) from (0,3F) to

(40,0)

 ld a, b

 cpl

 or 0x80 # turn beam off

 out (X), a

 ld a, c

 cpl

 and 0x3F # make sure servo and speaker bit unaffected

 out (Y), a

 call beam_on

 call beam_off

 inc b

 dec c

 ld a, c

 cp 0x00

 jp nz, downline

 upline: # draws a line at 135degrees (grad=1) from (40,0) to

(7F,3F)

 ld a, b

 cpl

 or 0x80 # turn beam off

 out (X), a

 ld a, c

 cpl

 and 0x3F # make sure servo and speaker bit unaffected

 out (Y), a

 call beam_on

 nop

48

 nop

 call beam_off

 inc b

 inc c

 ld a, c

 cp 0x3F

 jp nz, upline

 call beam_off

pointer: # draws a line of radius 10 at angle given

 ld a, 0x01 # initialise radius at 1

 ld (radius), a

 linept:

 ld a, (radius)

 call get_coords # get oscilloscope co-ordinates for (angle, radius)

 call plot_point # plot point on oscilloscope

 ld a, (radius)

 inc a

 ld (radius), a

 cp 0x0B # keep plotting points at (angle, radius) until radius > 10

 jp nz, linept

ret

show_profile: # displays profile of object scanned by profiler

 call plotoutline # plots outline showing extreme points and sweep-able

region

 ld a, 0x2C # start with angle at 45

 ld (angle), a

nextpoint:

 # get x-coordinate for point at angle using FA00 as start address and angle as

offset

 ld a, (angle)

 ld l, a

 ld h, 0xFA

 ld a, (hl)

 ld (x_coord), a

 # get y-coordinate for point at angle using F900 as start address and angle as

offset

 ld a, (angle)

 ld l, a

 ld h, 0xF9

 ld a, (hl)

 ld (y_coord), a

 ld b, a

 ld a, (x_coord)

 add a, b # a = x_coord + y_coord

 cp 0x00

 jp z, endplot

49

 # if x-coord and y-coord are both not 0 (i.e. x-coord + y-coord not = 0) then

plot the point on oscilloscope, otherwise simply go to next angle

 call plot_point

 endplot:

 ld a, (angle) # angle = angle + 1

 inc a

 ld (angle), a

 ld a, (angle) # if angle < 136 then show point for next angle, otherwise entire

profile shown so exit

 sub 0x88

 jp c, nextpoint

ret

rotate_to_angle: # loads timer0 with appropriate values for angle given and runs

it for long enough for a 1-3 degree rotation

 ld hl, reload_high_table # load high register value into timer for angle from

the reload_high_table using angle as offset

 ld b, 0x00

 ld a, (angle)

 ld c, a

 add hl, bc

 ld a, (hl)

 ld d, a

 out0 (rr_high0), a

 ld hl, reload_low_table # load low register value into timer for angle from

the reload_low_table using angle as offset

 ld b, 0x00

 ld a, (angle)

 ld c, a

 add hl, bc

 ld a, (hl)

 ld e, a

 out0 (rr_low0), a

 call enable_servo_timer # enables timer0

 call delay_servo_short # gives servo enough delay for 1-3 degree

rotation

 call disable_servo_timer # disables timer0

ret

init_vector_table:

 ld hl, vector_table

 ld a, h

 ld i, a # setting up higher order vector byte

 ld a, l

 and 0xE0 # mask out the unused data

 out0 (IVLR), a

 #enables interrupts that were previously disabled by default

50

 in0 a, (ITCR)

 or 0x04

 out0 (ITCR), a

 in0 a, (IVLR)

 or 0x04

 out0 (IVLR), a

ret

init_port:

 #initalise ports, A=input, B=output, C=output

 ld a, 0x90

 out0 (CSR), a

 #initialising portC such that all bits are zero, i.e timer bits are 0 and

oscilloscope Y-input is 000000

 ld a, 0x00

 out (Y), a

 #initialising portB such that all bits except bit7 are zero, i.e. oscilloscope

x-input is 0000000, and z-input = 1 (i.e. beam turned off)

 ld a, 0x80

 out (X), a

ret

init_angle45: # sets angle to 45degrees and loads in appropriate reload values

into timer 0

 ld a, 0x2D

 ld (angle), a

 ld d, 0x01 # angle = 45

 ld e, 0x50

 out0 (rr_high0), d

 out0 (rr_low0), e

ret

init_angle0: # sets angle to 0degrees and loads in appropriate reload values

into timer 0

 ld a, 0x00

 ld (angle), a

 ld d, 0x00 # angle = 0

 ld e, 0xD0

 out0 (rr_high0), d

 out0 (rr_low0), e

ret

enable_servo_timer: # turns timer0 (which is the servo motor input) on

 ei

 # make sure pulse starts on a low or else we would have an inverted wave to

what we desire

 in a, (Y)

 and 0x7F

51

 out (Y), a

 # turn timer0 on

 in0 a, (TCR)

 or 0x11

 out0 (TCR), a

ret

disable_servo_timer: # turns timer0 (which is the servo motor input) off

 di

 # turn timer0 off

 in0 a, (TCR)

 and 0xEE

 out0 (TCR), a

ret

enable_speaker_timer: # turns timer1 (which is the speaker input) on

 in0 a, (TCR)

 or 0x22

 out0 (TCR), a

ret

disable_speaker_timer: # turns timer1 (which is the speaker output) on

 in0 a, (TCR)

 and 0xDD

 out0 (TCR), a

ret

delay_servo_full: # gives servo enough delay for a full 180 or 90 degree

rotation

 push bc

 ld bc, 0xFFFF

full_delay_loop: # do FFFFh nop's

 nop

 dec bc

 ld a, 0x00

 cp b

 jp nz, full_delay_loop

 pop bc

ret

get_distance: # reads ADC value, converts it to distance

 ld l, 0x00

 ld h, 0x00

 ld b, 0x00

 in a, (ADC) # reads ADC data, adds it to hl

 ld c, a

 cp 0x28 # if ADC value < 0x28 (distance >= 64) it means nothing was

detected

 jp c, nothingthere

 add hl, bc

 in a, (ADC) # reads ADC data, adds it to hl

 ld c, a

 cp 0x28

 jp c, nothingthere

 add hl, bc

52

 in a, (ADC) # reads ADC data, adds it to hl

 ld c, a

 cp 0x28 # if ADC value < 0x28 (distance >= 64) it means nothing was

detected

 jp c, nothingthere

 add hl, bc

 in a, (ADC) # reads ADC data, adds it to hl

 ld c, a

 cp 0x28 # if ADC value < 0x28 (distance >= 64) it means nothing was

detected

 jp c, nothingthere

 add hl, bc

 # hl contains sum of four ADC readings

 # using shifts such that a = hl/4, i.e. a = 2 LSB of h and 6 MSB of l =

average ADC value

 srl l

 srl l

 sla h

 sla h

 sla h

 sla h

 sla h

 ld a, l

 or h

 jp endget

 nothingthere: # if nothing detected once set average ADC value to 0x00

 ld a, 0x00

 endget: # use distance_table and average ADC value as offset to

get distance and put it in (distance)

 ld b, 0x00

 ld c, a

 ld hl, distance_table

 add hl, bc

 ld a, (hl)

 ld (distance), a

ret

display_angle: # displays current angle on lcd

 ld a, (angle)

 ld (number), a

 call display_bin_to_dec # displays angle in decimal

 ld a, 0xDF # displays degree sign

 out (lcd_out), a

 call plotoutline

ret

display_angle_distance: # displays angle, distance, cartesian co-ordinates

 call display_angle # displays angle

53

 ld a, distance # if distance > 64 then do not display anything else

 cp 0x40

 jp nc, endofdisplay

 ld a, 0x14 # displays space

 out (lcd_out), a

 call plotoutline

 ld a, (distance) # displays distance in decimal

 ld (number), a

 call display_bin_to_dec

 ld a, 0x63 # displays "cm "

 out (lcd_out), a

 call delay_keypad

 ld a, 0x6D

 out (lcd_out), a

 call delay_keypad

 ld a, 0x14

 out (lcd_out), a

 call delay_keypad

 ld a, 0x14

 out (lcd_out), a

 call delay_keypad

 call get_coords

 ld a, (x_coord)

 cp 0x40

 jp c, xpos

 xneg: # if x_coord < 64 then display 64 - x_coord (negative)

 ld a, 0x2D # display "-"

 out (lcd_out), a

 call delay_keypad

 ld a, (x_coord)

 cpl

 inc a # a = -x_coord (2C)

 add 0x40 # a = -x_coord + 64

 jp showx

 xpos: # if x_coord > 64 then display x_coord - 64

 ld a, (x_coord)

 sub 0x40 # a = x_coord - 64

 showx:

 ld (number), a # display cartesian x_coord

 call display_bin_to_dec

 ld a, 0x2C # display ","

 out (lcd_out), a

 call delay_keypad

 showy: # display y-coordinate

 ld a, (y_coord)

 ld (number), a

54

 call display_bin_to_dec

 call delay_keypad

endofdisplay:

ret

increase_angle3:

 ld a, (angle) # angle = angle + 3

 add a, 0x03

 ld (angle), a

ret

decrease_angle3:

 ld a, (angle) # angle = angle - 3

 sub 0x03

 ld (angle), a

ret

increase_angle:

 ld a, (angle) # angle = angle + 1

 inc a

 ld (angle), a

ret

decrease_angle:

 ld a, (angle) # angle = angle - 1

 dec a

 ld (angle), a

ret

delay_keypad: # give enough delay to print character on lcd

 push bc

 ld bc, 0x00FF

delay_keypad_loop: # do FFh no-ops

 nop

 dec bc

 ld a, 0x00

 cp b

 jp nz, delay_keypad_loop

 pop bc

ret

get_coords: # gets oscilloscope co-ordinates for angle,radius and puts

it in x_coord and y_coord

 ld a, 0x00

 ld h, a

 ld l, a

 # uses angle as offset to retrieve cosine value from cosine_table

 ld a, (angle)

 ld c, a

55

 ld hl, cosine_table

 ld b, 0x00

 add hl, bc

 ld a, (hl)

 ld h, a

 ld a, (radius)

 ld l, a

 mlt hl # h = cosine(angle)*radius (number part), l =

cosine(angle)*radius (fraction part)

 ld a, (angle) # check if angle > 90

 cp 0x5A #90

 jp nc, nonneg

 ld a, h # if angle < 90 x_coord = 64-h

 cpl

 inc a

 ld h, a

 nonneg: # if angle >= 90 x_coord = 64+h

 ld a, h

 add a, 0x40

 ld (x_coord), a

 # uses angle as offset to retrieve cosine value from sine_table

 ld a, (angle)

 ld c, a

 ld hl, sine_table

 ld b, 0x00

 add hl, bc

 ld a, (hl)

 ld h, a

 ld a, (radius)

 ld l, a

 mlt hl # h = sine(angle)*radius (number part), l = sine(angle)*radius

(fraction part)

 ld a, h

 ld (y_coord), a

ret

plot_point: # plots point on oscilloscope given by co-ordinates x_coord and

y_coord

 ld a, (x_coord) # sets lower 7 bits of portB (oscilloscope x-input) as

x_coord

 and 0x7F

 ld h, a

 in a, (X)

 and 0x80 # set bit7 (Z-input) to 1 (turn beam off)

 or h

 out (X), a

 ld a, (y_coord) # sets lower 6 bits of portC (oscilloscope y-input) as

y_coord

 and 0x3F # make sure bit6 and bit 7 set to 0

 ld h, a

56

 in a, (Y)

 and 0xC0 # make sure bit6 and bit7 (speaker and servo input)

unaffected

 or h

 and 0xBF

 out (Y), a

 call beam_on # turn beam on for short time and then turn it off

 nop

 nop

 nop

 nop

 nop

 call beam_off

ret

display_bin_to_dec: # display binary number in decimal on lcd

 ld h, 0x00

 ld a, (number)

start100: # keep subtracting 100 from a and incrementing h until a <

0

 sub 0x64

 jp c, end100

 inc h

 ld (number), a

 jp start100

end100: # h stores hundreds digit

 ld a, h

 cp 0x00

 jp z, init10

 ld a, h # display h as number (in ASCII, 0 is at 30, so e.g. 1 is

at 31) on lcd

 add a, 0x30

 out (lcd_out), a

 call plotoutline

init10:

 ld a, (number)

 ld h, 0x00

start10: # keep subtracting 10 from a and incrementing h until a <

0

 sub 0x0A

 jp c, end10

 inc h

 ld (number), a

 jp start10

end10:

 ld a, h # h stores tens digit

 add a, 0x30

 out (lcd_out), a # display h as number (in ASCII, 0 is at 30, so e.g. 1 is

at 31) on lcd

 call delay_keypad

 ld a, (number)

57

 ld h, a

 ld a, h # h stores units digit

 add a, 0x30 # display h as number (in ASCII, 0 is at 30, so e.g. 1 is

at 31) on lcd

 out (lcd_out), a

 call delay_keypad

ret

display_character: # displays ASCII character put in reg a onto lcd screen

 out (lcd_out), a

 call delay_keypad

 ld a, 0x20

ret

display_menu:

 # display 'SELECT MODE' and go to next line

 ld a, 0x53

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x4C

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x43

 call display_character

 ld a, 0x54

 call display_character

 ld a, 0x20

 call display_character

 ld a, 0x4D

 call display_character

 ld a, 0x4F

 call display_character

 ld a, 0x44

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x20

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

58

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 # display '1RAD 2TRK 3PRF'

 ld a, 0x31

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x44

 call display_character

 ld a, 0x20

 call display_character

 ld a, 0x32

 call display_character

 ld a, 0x54

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x4B

 call display_character

 ld a, 0x20

 call display_character

 ld a, 0x33

 call display_character

 ld a, 0x50

 call display_character

 ld a, 0x52

 call display_character

59

 ld a, 0x46

 call display_character

ret

display_radar_mode:

 # display 'RADAR MODE' and go to next line

 ld a, 0x52

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x44

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x20

 call display_character

 ld a, 0x4D

 call display_character

 ld a, 0x4F

 call display_character

 ld a, 0x44

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x20

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

60

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

ret

display_tracker_seeking:

 # display 'TRACKER-SEEKING' and go to next line

 ld a, 0x54

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x43

 call display_character

 ld a, 0x4B

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x2D

 call display_character

 ld a, 0x53

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x4B

 call display_character

 ld a, 0x49

 call display_character

 ld a, 0x4E

 call display_character

 ld a, 0x47

 call display_character

 ld a, 0x20

 call display_character

 call display_character

 call display_character

 call display_character

61

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

ret

display_tracker_locked:

 # display 'TRACKER-LOCKED' and go to next line

 ld a, 0x54

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x43

 call display_character

 ld a, 0x4B

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x2D

 call display_character

 ld a, 0x4C

 call display_character

 ld a, 0x4F

 call display_character

 ld a, 0x43

 call display_character

 ld a, 0x4B

 call display_character

62

 ld a, 0x45

 call display_character

 ld a, 0x44

 call display_character

 ld a, 0x20

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

ret

display_profiler_mode:

 # display 'PROFILER MODE' and go to next line

 ld a, 0x50

 call display_character

 ld a, 0x52

 call display_character

 ld a, 0x4F

 call display_character

 ld a, 0x46

 call display_character

 ld a, 0x49

 call display_character

 ld a, 0x4C

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x52

 call display_character

63

 ld a, 0x20

 call display_character

 ld a, 0x4D

 call display_character

 ld a, 0x4F

 call display_character

 ld a, 0x44

 call display_character

 ld a, 0x45

 call display_character

 ld a, 0x20

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

ret

display_rotating:

 # display 'ROTATING BACK' and go to next line

 ld a, 0x52

 call display_character

 ld a, 0x4F

 call display_character

 ld a, 0x54

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x54

 call display_character

64

 ld a, 0x49

 call display_character

 ld a, 0x4E

 call display_character

 ld a, 0x47

 call display_character

 ld a, 0x20

 call display_character

 ld a, 0x42

 call display_character

 ld a, 0x41

 call display_character

 ld a, 0x43

 call display_character

 ld a, 0x4B

 call display_character

ret

display_object:

 # display 'OBJECT DETECTED' and go to next line

 ld a, 'O'

 call display_character

 ld a, 'B'

 call display_character

 ld a, 'J'

 call display_character

 ld a, 'E'

 call display_character

 ld a, 'C'

 call display_character

 ld a, 'T'

 call display_character

 ld a, ' '

 call display_character

 ld a, 'D'

 call display_character

 ld a, 'E'

 call display_character

 ld a, 'T'

 call display_character

 ld a, 'E'

 call display_character

65

 ld a, 'C'

 call display_character

 ld a, 'T'

 call display_character

 ld a, 'E'

 call display_character

 ld a, 'D'

 call display_character

 ld a, ' '

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

 call display_character

ret

sine_table: # table storing sine values for each angle, using angle as offset

maps angles to sine values in fixed point binary fractions (binary point before MSB)

.byte 0x00, 0x04, 0x08, 0x0D, 0x11, 0x16, 0x1A, 0x1F, 0x23, 0x28, 0x2C, 0x30, 0x35,

0x39, 0x3D, 0x42

.byte 0x46, 0x4A, 0x4F, 0x53, 0x57, 0x5B, 0x5F, 0x64, 0x68, 0x6C, 0x70, 0x74, 0x78,

0x7C, 0x80, 0x83

.byte 0x87, 0x8B, 0x8F, 0x92, 0x96, 0x9A, 0x9D, 0xA1, 0xA4, 0xA7, 0xAB, 0xAE, 0xB1,

0xB5, 0xB8, 0xBB

.byte 0xBE, 0xC1, 0xC4, 0xC6, 0xC9, 0xCC, 0xCF, 0xD1, 0xD4, 0xD6, 0xD9, 0xDB, 0xDD,

0xDF, 0xE2, 0xE4

.byte 0xE6, 0xE8, 0xE9, 0xEB, 0xED, 0xEF, 0xF0, 0xF2, 0xF3, 0xF4, 0xF6, 0xF7, 0xF8,

0xF9, 0xFA, 0xFB

.byte 0xFC, 0xFC, 0xFD, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

0xFF, 0xFF, 0xFF

.byte 0xFE, 0xFE, 0xFD, 0xFC, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF4, 0xF3,

0xF2, 0xF0, 0xEE

.byte 0xED, 0xEB, 0xE9, 0xE7, 0xE6, 0xE4, 0xE2, 0xDF, 0xDD, 0xDB, 0xD9, 0xD6, 0xD4,

0xD1, 0xCF, 0xCC

66

.byte 0xC9, 0xC6, 0xC4, 0xC1, 0xBE, 0xBB, 0xB8, 0xB4, 0xB1, 0xAE, 0xAB, 0xA7, 0xA4,

0xA1, 0x9D, 0x99

.byte 0x96, 0x92, 0x8F, 0x8B, 0x87, 0x83, 0x7F, 0x7C, 0x78, 0x74, 0x70, 0x6C, 0x68,

0x63, 0x5F, 0x5B

.byte 0x57, 0x53, 0x4F, 0x4A, 0x46, 0x42, 0x3D, 0x39, 0x35, 0x30, 0x2C, 0x27, 0x23,

0x1F, 0x1A, 0x16

.byte 0x11, 0x0D, 0x08, 0x04, 0x00

cosine_table: # table storing cosine values for each angle, using angle as

offset maps angles to cosine values in fixed point binary fractions (binary point

before MSB)

.byte 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFE, 0xFD, 0xFC, 0xFC, 0xFB, 0xFA,

0xF9, 0xF8, 0xF7

.byte 0xF6, 0xF4, 0xF3, 0xF2, 0xF0, 0xEE, 0xED, 0xEB, 0xE9, 0xE8, 0xE6, 0xE4, 0xE2,

0xDF, 0xDD, 0xDB

.byte 0xD9, 0xD6, 0xD4, 0xD1, 0xCF, 0xCC, 0xC9, 0xC6, 0xC4, 0xC1, 0xBE, 0xBB, 0xB8,

0xB5, 0xB1, 0xAE

.byte 0xAB, 0xA7, 0xA4, 0xA1, 0x9D, 0x9A, 0x96, 0x92, 0x8F, 0x8B, 0x87, 0x83, 0x7F,

0x7C, 0x78, 0x74

.byte 0x70, 0x6C, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4F, 0x4A, 0x46, 0x42, 0x3D,

0x39, 0x35, 0x30

.byte 0x2C, 0x28, 0x23, 0x1F, 0x1A, 0x16, 0x11, 0x0D, 0x08, 0x04, 0x00, 0x04, 0x08,

0x0D, 0x11, 0x16

.byte 0x1A, 0x1F, 0x23, 0x28, 0x2C, 0x30, 0x35, 0x39, 0x3D, 0x42, 0x46, 0x4A, 0x4F,

0x53, 0x57, 0x5B

.byte 0x5F, 0x64, 0x68, 0x6C, 0x70, 0x74, 0x78, 0x7C, 0x80, 0x83, 0x87, 0x8B, 0x8F,

0x92, 0x96, 0x9A

.byte 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAE, 0xB1, 0xB5, 0xB8, 0xBB, 0xBE, 0xC1, 0xC4,

0xC7, 0xC9, 0xCC

.byte 0xCF, 0xD1, 0xD4, 0xD6, 0xD9, 0xDB, 0xDD, 0xDF, 0xE2, 0xE4, 0xE6, 0xE8, 0xE9,

0xEB, 0xED, 0xEF

.byte 0xF0, 0xF2, 0xF3, 0xF4, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFC, 0xFD,

0xFE, 0xFE, 0xFF

.byte 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

distance_table: # table storing distance values for each ADC reading, using ADC

reading as offset maps ADC readings to distances (in cm)

.byte 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,

0x40, 0x40, 0x40

.byte 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,

0x40, 0x40, 0x40

.byte 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x3F, 0x3E, 0x3D, 0x3C, 0x3B, 0x3A, 0x39,

0x38, 0x37, 0x36

.byte 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x2F, 0x2E, 0x2E, 0x2D, 0x2C, 0x2C, 0x2B,

0x2A, 0x2A, 0x28

.byte 0x27, 0x26, 0x25, 0x25, 0x24, 0x24, 0x23, 0x23, 0x22, 0x22, 0x21, 0x21, 0x20,

0x20, 0x1F, 0x1F

.byte 0x1F, 0x1E, 0x1E, 0x1E, 0x1D, 0x1D, 0x1C, 0x1C, 0x1C, 0x1B, 0x1B, 0x1B, 0x1A,

0x1A, 0x19, 0x19

.byte 0x19, 0x18, 0x18, 0x18, 0x18, 0x17, 0x17, 0x17, 0x17, 0x16, 0x16, 0x16, 0x16,

0x15, 0x15, 0x15

.byte 0x15, 0x14, 0x14, 0x14, 0x14, 0x14, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13,

0x12, 0x12, 0x12

.byte 0x12, 0x12, 0x12, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10

.byte 0x10, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0E, 0x0E, 0x0E,

0x0E, 0x0E, 0x0E

.byte 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D,

0x0D, 0x0D, 0x0D

.byte 0x0D, 0x0D, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C,

0x0C, 0x0C, 0x0C

67

.byte 0x0C, 0x0C, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A,

0x0A, 0x0A, 0x0A

.byte 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A,

0x0A, 0x0A, 0x0A

.byte 0x0A, 0x0A, 0x0A, 0x0A, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,

0x09, 0x09, 0x09

.byte 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,

0x40, 0x40, 0x40

reload_low_table: # table mapping each angle to the required low reload register

value to be put into timer0 to rotate the servo to that angle

.byte 0xD0, 0xD2, 0xD5, 0xD8, 0xDB, 0xDE, 0xE1, 0xE3, 0xE6, 0xE9, 0xEC, 0xEF, 0xF2,

0xF4, 0xF7, 0xFA

.byte 0xFD, 0x00, 0x03, 0x06, 0x08, 0x0B, 0x0E, 0x11, 0x14, 0x17, 0x19, 0x1C, 0x1F,

0x22, 0x25, 0x28

.byte 0x2B, 0x2D, 0x30, 0x33, 0x36, 0x39, 0x3C, 0x3E, 0x41, 0x44, 0x47, 0x4A, 0x4D,

0x50, 0x52, 0x55

.byte 0x58, 0x5B, 0x5E, 0x61, 0x63, 0x66, 0x69, 0x6C, 0x6F, 0x72, 0x74, 0x77, 0x7A,

0x7D, 0x80, 0x83

.byte 0x86, 0x88, 0x8B, 0x8E, 0x91, 0x94, 0x97, 0x99, 0x9C, 0x9F, 0xA2, 0xA5, 0xA8,

0xAB, 0xAD, 0xB0

.byte 0xB3, 0xB6, 0xB9, 0xBC, 0xBE, 0xC1, 0xC4, 0xC7, 0xCA, 0xCD, 0xD0, 0xD2, 0xD5,

0xD8, 0xDB, 0xDE

.byte 0xE1, 0xE3, 0xE6, 0xE9, 0xEC, 0xEF, 0xF2, 0xF4, 0xF7, 0xFA, 0xFD, 0x00, 0x03,

0x06, 0x08, 0x0B

.byte 0x0E, 0x11, 0x14, 0x17, 0x19, 0x1C, 0x1F, 0x22, 0x25, 0x28, 0x2B, 0x2D, 0x30,

0x33, 0x36, 0x39

.byte 0x3C, 0x3E, 0x41, 0x44, 0x47, 0x4A, 0x4D, 0x50, 0x52, 0x55, 0x58, 0x5B, 0x5E,

0x61, 0x63, 0x66

.byte 0x69, 0x6C, 0x6F, 0x72, 0x74, 0x77, 0x7A, 0x7D, 0x80, 0x83, 0x86, 0x88, 0x8B,

0x8E, 0x91, 0x94

.byte 0x97, 0x99, 0x9C, 0x9F, 0xA2, 0xA5, 0xA8, 0xAB, 0xAD, 0xB0, 0xB3, 0xB6, 0xB9,

0xBC, 0xBE, 0xC1

.byte 0xC4, 0xC7, 0xCA, 0xCD, 0xD0

reload_high_table: # table mapping each angle to the required high reload register

value to be put into timer0 to rotate the servo to that angle

.byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

.byte 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01

.byte 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01

.byte 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01

.byte 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01

.byte 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01

.byte 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02,

0x02, 0x02, 0x02

.byte 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,

0x02, 0x02, 0x02

.byte 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,

0x02, 0x02, 0x02

.byte 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,

0x02, 0x02, 0x02

.byte 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,

0x02, 0x02, 0x02

.byte 0x02, 0x02, 0x02, 0x02, 0x02

68

APPENDIX B – CIRCUIT DIAGRAMS

Block Diagram of Complete System

Please note:

Arrows indicate data flow

Shaded lines indicate digital data

Black lines indicate analogue data

69

IR Sensor and ADC Connections

Chips Used: ADC0804LCN A/D Converter

DACs, OpAmps and Oscilloscope X & Y inputs

Chips Used: DAC0832LCN D/A Converter & LF356N Op Amp

70

Chips Used: DAC0832LCN D/A Converter & LF356N Op Amp

Servo Motor, Speaker and Oscilloscope Z-input

71

APPENDIX C – LOOK-UP TABLES

Reload High and Reload Low tables

The following shows the reload_high_table and reload_low_table tables which use the angle as

offset to retrieve the corresponding reload value for each angle to put into the timer for rotating

to that angle.

angle
(offset)

angle
(hex)

reload value
(decimal)

reload value
(hexadecimal)

reload_high_
table entry

reload_low_
table entry

000 00 208 00D0 00 D0

001 01 211 00D2 00 D2

002 02 214 00D5 00 D5

003 03 217 00D8 00 D8

004 04 219 00DB 00 DB

005 05 222 00DE 00 DE

006 06 225 00E1 00 E1

007 07 228 00E3 00 E3

008 08 231 00E6 00 E6

009 09 234 00E9 00 E9

010 0A 236 00EC 00 EC

011 0B 239 00EF 00 EF

012 0C 242 00F2 00 F2

013 0D 245 00F4 00 F4

014 0E 248 00F7 00 F7

015 0F 251 00FA 00 FA

016 10 254 00FD 00 FD

017 11 256 0100 01 00

018 12 259 0103 01 03

019 13 262 0106 01 06

020 14 265 0108 01 08

021 15 268 010B 01 0B

022 16 271 010E 01 0E

023 17 273 0111 01 11

024 18 276 0114 01 14

025 19 279 0117 01 17

026 1A 282 0119 01 19

027 1B 285 011C 01 1C

028 1C 288 011F 01 1F

029 1D 290 0122 01 22

030 1E 293 0125 01 25

031 1F 296 0128 01 28

032 20 299 012B 01 2B

033 21 302 012D 01 2D

034 22 305 0130 01 30

035 23 308 0133 01 33

036 24 310 0136 01 36

72

037 25 313 0139 01 39

038 26 316 013C 01 3C

039 27 319 013E 01 3E

040 28 322 0141 01 41

041 29 325 0144 01 44

042 2A 327 0147 01 47

043 2B 330 014A 01 4A

044 2C 333 014D 01 4D

045 2D 336 0150 01 50

046 2E 339 0152 01 52

047 2F 342 0155 01 55

048 30 345 0158 01 58

049 31 347 015B 01 5B

050 32 350 015E 01 5E

051 33 353 0161 01 61

052 34 356 0163 01 63

053 35 359 0166 01 66

054 36 362 0169 01 69

055 37 364 016C 01 6C

056 38 367 016F 01 6F

057 39 370 0172 01 72

058 3A 373 0174 01 74

059 3B 376 0177 01 77

060 3C 379 017A 01 7A

061 3D 382 017D 01 7D

062 3E 384 0180 01 80

063 3F 387 0183 01 83

064 40 390 0186 01 86

065 41 393 0188 01 88

066 42 396 018B 01 8B

067 43 399 018E 01 8E

068 44 401 0191 01 91

069 45 404 0194 01 94

070 46 407 0197 01 97

071 47 410 0199 01 99

072 48 413 019C 01 9C

073 49 416 019F 01 9F

074 4A 418 01A2 01 A2

075 4B 421 01A5 01 A5

076 4C 424 01A8 01 A8

077 4D 427 01AB 01 AB

078 4E 430 01AD 01 AD

079 4F 433 01B0 01 B0

080 50 436 01B3 01 B3

081 51 438 01B6 01 B6

082 52 441 01B9 01 B9

73

083 53 444 01BC 01 BC

084 54 447 01BE 01 BE

085 55 450 01C1 01 C1

086 56 453 01C4 01 C4

087 57 455 01C7 01 C7

088 58 458 01CA 01 CA

089 59 461 01CD 01 CD

090 5A 464 01D0 01 D0

091 5B 467 01D2 01 D2

092 5C 470 01D5 01 D5

093 5D 473 01D8 01 D8

094 5E 475 01DB 01 DB

095 5F 478 01DE 01 DE

096 60 481 01E1 01 E1

097 61 484 01E3 01 E3

098 62 487 01E6 01 E6

099 63 490 01E9 01 E9

100 64 492 01EC 01 EC

101 65 495 01EF 01 EF

102 66 498 01F2 01 F2

103 67 501 01F4 01 F4

104 68 504 01F7 01 F7

105 69 507 01FA 01 FA

106 6A 510 01FD 01 FD

107 6B 512 0200 02 00

108 6C 515 0203 02 03

109 6D 518 0206 02 06

110 6E 521 0208 02 08

111 6F 524 020B 02 0B

112 70 527 020E 02 0E

113 71 529 0211 02 11

114 72 532 0214 02 14

115 73 535 0217 02 17

116 74 538 0219 02 19

117 75 541 021C 02 1C

118 76 544 021F 02 1F

119 77 546 0222 02 22

120 78 549 0225 02 25

121 79 552 0228 02 28

122 7A 555 022B 02 2B

123 7B 558 022D 02 2D

124 7C 561 0230 02 30

125 7D 564 0233 02 33

126 7E 566 0236 02 36

127 7F 569 0239 02 39

128 80 572 023C 02 3C

74

129 81 575 023E 02 3E

130 82 578 0241 02 41

131 83 581 0244 02 44

132 84 583 0247 02 47

133 85 586 024A 02 4A

134 86 589 024D 02 4D

135 87 592 0250 02 50

136 88 595 0252 02 52

137 89 598 0255 02 55

138 8A 601 0258 02 58

139 8B 603 025B 02 5B

140 8C 606 025E 02 5E

141 8D 609 0261 02 61

142 8E 612 0263 02 63

143 8F 615 0266 02 66

144 90 618 0269 02 69

145 91 620 026C 02 6C

146 92 623 026F 02 6F

147 93 626 0272 02 72

148 94 629 0274 02 74

149 95 632 0277 02 77

150 96 635 027A 02 7A

151 97 638 027D 02 7D

152 98 640 0280 02 80

153 99 643 0283 02 83

154 9A 646 0286 02 86

155 9B 649 0288 02 88

156 9C 652 028B 02 8B

157 9D 655 028E 02 8E

158 9E 657 0291 02 91

159 9F 660 0294 02 94

160 A0 663 0297 02 97

161 A1 666 0299 02 99

162 A2 669 029C 02 9C

163 A3 672 029F 02 9F

164 A4 674 02A2 02 A2

165 A5 677 02A5 02 A5

166 A6 680 02A8 02 A8

167 A7 683 02AB 02 AB

168 A8 686 02AD 02 AD

169 A9 689 02B0 02 B0

170 AA 692 02B3 02 B3

171 AB 694 02B6 02 B6

172 AC 697 02B9 02 B9

173 AD 700 02BC 02 BC

174 AE 703 02BE 02 BE

75

175 AF 706 02C1 02 C1

176 B0 709 02C4 02 C4

177 B1 711 02C7 02 C7

178 B2 714 02CA 02 CA

179 B3 717 02CD 02 CD

180 B4 720 02D0 02 D0

Sine and Cosine tables

The sine and cosine tables map angles to sine and (absolute) cosines values respectively

angle

sine
(angle)

sine
table
entry

cosine
(angle)

cosine
table
entry

000 0.00 00 1.00 FF

001 0.02 04 1.00 FF

002 0.03 08 1.00 FF

003 0.05 0D 1.00 FF

004 0.07 11 1.00 FF

005 0.09 16 1.00 FF

006 0.10 1A 0.99 FE

007 0.12 1F 0.99 FE

008 0.14 23 0.99 FD

009 0.16 28 0.99 FC

010 0.17 2C 0.98 FC

011 0.19 30 0.98 FB

012 0.21 35 0.98 FA

013 0.22 39 0.97 F9

014 0.24 3D 0.97 F8

015 0.26 42 0.97 F7

016 0.28 46 0.96 F6

017 0.29 4A 0.96 F4

018 0.31 4F 0.95 F3

019 0.33 53 0.95 F2

020 0.34 57 0.94 F0

021 0.36 5B 0.93 EE

022 0.37 5F 0.93 ED

023 0.39 64 0.92 EB

024 0.41 68 0.91 E9

025 0.42 6C 0.91 E8

026 0.44 70 0.90 E6

027 0.45 74 0.89 E4

028 0.47 78 0.88 E2

029 0.48 7C 0.87 DF

030 0.50 80 0.87 DD

031 0.52 83 0.86 DB

032 0.53 87 0.85 D9

033 0.54 8B 0.84 D6

034 0.56 8F 0.83 D4

035 0.57 92 0.82 D1

angle

sine
(angle)

sine
table
entry

cosine
(angle)

cosine
table
entry

036 0.59 96 0.81 CF

037 0.60 9A 0.80 CC

038 0.62 9D 0.79 C9

039 0.63 A1 0.78 C6

040 0.64 A4 0.77 C4

041 0.66 A7 0.75 C1

042 0.67 AB 0.74 BE

043 0.68 AE 0.73 BB

044 0.69 B1 0.72 B8

045 0.71 B5 0.71 B5

046 0.72 B8 0.69 B1

047 0.73 BB 0.68 AE

048 0.74 BE 0.67 AB

049 0.75 C1 0.66 A7

050 0.77 C4 0.64 A4

051 0.78 C6 0.63 A1

052 0.79 C9 0.62 9D

053 0.80 CC 0.60 9A

054 0.81 CF 0.59 96

055 0.82 D1 0.57 92

056 0.83 D4 0.56 8F

057 0.84 D6 0.54 8B

058 0.85 D9 0.53 87

059 0.86 DB 0.51 83

060 0.87 DD 0.50 7F

061 0.87 DF 0.48 7C

062 0.88 E2 0.47 78

063 0.89 E4 0.45 74

064 0.90 E6 0.44 70

065 0.91 E8 0.42 6C

066 0.91 E9 0.41 68

067 0.92 EB 0.39 63

068 0.93 ED 0.37 5F

069 0.93 EF 0.36 5B

070 0.94 F0 0.34 57

071 0.95 F2 0.33 53

76

072 0.95 F3 0.31 4F

073 0.96 F4 0.29 4A

074 0.96 F6 0.28 46

075 0.97 F7 0.26 42

076 0.97 F8 0.24 3D

077 0.97 F9 0.22 39

078 0.98 FA 0.21 35

079 0.98 FB 0.19 30

080 0.98 FC 0.17 2C

081 0.99 FC 0.16 28

082 0.99 FD 0.14 23

083 0.99 FE 0.12 1F

084 0.99 FE 0.10 1A

085 1.00 FF 0.09 16

086 1.00 FF 0.07 11

087 1.00 FF 0.05 0D

088 1.00 FF 0.03 08

089 1.00 FF 0.02 04

090 1.00 FF 0.00 00

091 1.00 FF 0.02 04

092 1.00 FF 0.04 08

093 1.00 FF 0.05 0D

094 1.00 FF 0.07 11

095 1.00 FF 0.09 16

096 0.99 FE 0.10 1A

097 0.99 FE 0.12 1F

098 0.99 FD 0.14 23

099 0.99 FC 0.16 28

100 0.98 FC 0.17 2C

101 0.98 FB 0.19 30

102 0.98 FA 0.21 35

103 0.97 F9 0.23 39

104 0.97 F8 0.24 3D

105 0.97 F7 0.26 42

106 0.96 F6 0.28 46

107 0.96 F4 0.29 4A

108 0.95 F3 0.31 4F

109 0.95 F2 0.33 53

110 0.94 F0 0.34 57

111 0.93 EE 0.36 5B

112 0.93 ED 0.37 5F

113 0.92 EB 0.39 64

114 0.91 E9 0.41 68

115 0.91 E7 0.42 6C

116 0.90 E6 0.44 70

117 0.89 E4 0.45 74

118 0.88 E2 0.47 78

119 0.87 DF 0.49 7C

120 0.87 DD 0.50 80

121 0.86 DB 0.52 83

122 0.85 D9 0.53 87

123 0.84 D6 0.54 8B

124 0.83 D4 0.56 8F

125 0.82 D1 0.57 92

126 0.81 CF 0.59 96

127 0.80 CC 0.60 9A

128 0.79 C9 0.62 9D

129 0.78 C6 0.63 A1

130 0.77 C4 0.64 A4

131 0.75 C1 0.66 A8

132 0.74 BE 0.67 AB

133 0.73 BB 0.68 AE

134 0.72 B8 0.69 B1

135 0.71 B4 0.71 B5

136 0.69 B1 0.72 B8

137 0.68 AE 0.73 BB

138 0.67 AB 0.74 BE

139 0.66 A7 0.75 C1

140 0.64 A4 0.77 C4

141 0.63 A1 0.78 C7

142 0.62 9D 0.79 C9

143 0.60 99 0.80 CC

144 0.59 96 0.81 CF

145 0.57 92 0.82 D1

146 0.56 8F 0.83 D4

147 0.54 8B 0.84 D6

148 0.53 87 0.85 D9

149 0.51 83 0.86 DB

150 0.50 7F 0.87 DD

151 0.48 7C 0.87 DF

152 0.47 78 0.88 E2

153 0.45 74 0.89 E4

154 0.44 70 0.90 E6

155 0.42 6C 0.91 E8

156 0.41 68 0.91 E9

157 0.39 63 0.92 EB

158 0.37 5F 0.93 ED

159 0.36 5B 0.93 EF

160 0.34 57 0.94 F0

161 0.33 53 0.95 F2

162 0.31 4F 0.95 F3

163 0.29 4A 0.96 F4

164 0.28 46 0.96 F6

165 0.26 42 0.97 F7

166 0.24 3D 0.97 F8

167 0.22 39 0.97 F9

168 0.21 35 0.98 FA

169 0.19 30 0.98 FB

170 0.17 2C 0.98 FC

171 0.16 27 0.99 FC

172 0.14 23 0.99 FD

173 0.12 1F 0.99 FE

77

174 0.10 1A 0.99 FE

175 0.09 16 1.00 FF

176 0.07 11 1.00 FF

177 0.05 0D 1.00 FF

178 0.03 08 1.00 FF

179 0.02 04 1.00 FF

180 0.00 00 1.00 FF

Distance Table

Maps ADC readings from IR sensor to distances of object from sensor, uses hex reading as offset

ADC

Reading
(decimal)

Hex
Reading

Distance
(cm)

Table
entry
(hex)

000 00 64 40

001 01 64 40

002 02 64 40

003 03 64 40

004 04 64 40

005 05 64 40

006 06 64 40

007 07 64 40

008 08 64 40

009 09 64 40

010 0A 64 40

011 0B 64 40

012 0C 64 40

013 0D 64 40

014 0E 64 40

015 0F 64 40

016 10 64 40

017 11 64 40

018 12 64 40

019 13 64 40

020 14 64 40

021 15 64 40

022 16 64 40

023 17 64 40

024 18 64 40

025 19 64 40

026 1A 64 40

027 1B 64 40

028 1C 64 40

029 1D 64 40

030 1E 64 40

031 1F 64 40

032 20 64 40

033 21 64 40

034 22 64 40

035 23 64 40

036 24 64 40

037 25 64 40

ADC
Reading
(decimal)

Hex
Reading

Distance
(cm)

Table
entry
(hex)

038 26 63 3F

039 27 62 3E

040 28 61 3D

041 29 60 3C

042 2A 59 3B

043 2B 58 3A

044 2C 57 39

045 2D 56 38

046 2E 55 37

047 2F 54 36

048 30 53 35

049 31 52 34

050 32 51 33

051 33 50 32

052 34 49 31

053 35 48 30

054 36 47 2F

055 37 46 2E

056 38 46 2E

057 39 45 2D

058 3A 44 2C

059 3B 44 2C

060 3C 43 2B

061 3D 42 2A

062 3E 42 2A

063 3F 40 28

064 40 39 27

065 41 38 26

066 42 37 25

067 43 37 25

068 44 36 24

069 45 36 24

070 46 35 23

071 47 35 23

072 48 34 22

073 49 34 22

074 4A 33 21

075 4B 33 21

ADC
Reading
(decimal)

Hex
Reading

Distance
(cm)

Table
entry
(hex)

076 4C 32 20

077 4D 32 20

078 4E 31 1F

079 4F 31 1F

080 50 31 1F

081 51 30 1E

082 52 30 1E

083 53 30 1E

084 54 29 1D

085 55 29 1D

086 56 28 1C

087 57 28 1C

088 58 28 1C

089 59 27 1B

090 5A 27 1B

091 5B 27 1B

092 5C 26 1A

093 5D 26 1A

094 5E 25 19

095 5F 25 19

096 60 25 19

097 61 24 18

098 62 24 18

099 63 24 18

100 64 24 18

101 65 23 17

102 66 23 17

103 67 23 17

104 68 23 17

105 69 22 16

106 6A 22 16

107 6B 22 16

108 6C 22 16

109 6D 21 15

110 6E 21 15

111 6F 21 15

112 70 21 15

113 71 20 14

78

ADC
Reading
(decimal)

Hex
Reading

Distance
(cm)

Table
entry
(hex)

114 72 20 14

115 73 20 14

116 74 20 14

117 75 20 14

118 76 19 13

119 77 19 13

120 78 19 13

121 79 19 13

122 7A 19 13

123 7B 19 13

124 7C 19 13

125 7D 18 12

126 7E 18 12

127 7F 18 12

128 80 18 12

129 81 18 12

130 82 18 12

131 83 17 11

132 84 17 11

133 85 17 11

134 86 17 11

135 87 17 11

136 88 17 11

137 89 16 10

138 8A 16 10

139 8B 16 10

140 8C 16 10

141 8D 16 10

142 8E 16 10

143 8F 16 10

144 90 16 10

145 91 15 0F

146 92 15 0F

147 93 15 0F

148 94 15 0F

149 95 15 0F

150 96 15 0F

151 97 15 0F

152 98 15 0F

153 99 15 0F

154 9A 14 0E

155 9B 14 0E

156 9C 14 0E

157 9D 14 0E

158 9E 14 0E

159 9F 14 0E

160 A0 14 0E

ADC
Reading
(decimal)

Hex

Reading

Distance
(cm)

Table
entry
(hex)

161 A1 14 0E

162 A2 14 0E

163 A3 14 0E

164 A4 14 0E

165 A5 13 0D

166 A6 13 0D

167 A7 13 0D

168 A8 13 0D

169 A9 13 0D

170 AA 13 0D

171 AB 13 0D

172 AC 13 0D

173 AD 13 0D

174 AE 13 0D

175 AF 13 0D

176 B0 13 0D

177 B1 13 0D

178 B2 12 0C

179 B3 12 0C

180 B4 12 0C

181 B5 12 0C

182 B6 12 0C

183 B7 12 0C

184 B8 12 0C

185 B9 12 0C

186 BA 12 0C

187 BB 12 0C

188 BC 12 0C

189 BD 12 0C

190 BE 12 0C

191 BF 12 0C

192 C0 12 0C

193 C1 12 0C

194 C2 11 0B

195 C3 11 0B

196 C4 11 0B

197 C5 11 0B

198 C6 11 0B

199 C7 11 0B

200 C8 10 0A

201 C9 10 0A

202 CA 10 0A

203 CB 10 0A

204 CC 10 0A

205 CD 10 0A

206 CE 10 0A

207 CF 10 0A

208 D0 10 0A

209 D1 10 0A

ADC
Reading
(decimal)

Hex
Reading

Distance

(cm)

Table
entry
(hex)

210 D2 10 0A

211 D3 10 0A

212 D4 10 0A

213 D5 10 0A

214 D6 10 0A

215 D7 10 0A

216 D8 10 0A

217 D9 10 0A

218 DA 10 0A

219 DB 10 0A

220 DC 10 0A

221 DD 10 0A

222 DE 10 0A

223 DF 10 0A

224 E0 10 0A

225 E1 10 0A

226 E2 10 0A

227 E3 10 0A

228 E4 09 09

229 E5 09 09

230 E6 09 09

231 E7 09 09

232 E8 09 09

233 E9 09 09

234 EA 09 09

235 EB 09 09

236 EC 09 09

237 ED 09 09

238 EE 09 09

239 EF 09 09

240 F0 09 09

241 F1 09 09

242 F2 09 09

243 F3 09 09

244 F4 09 09

245 F5 09 09

246 F6 09 09

247 F7 64 40

248 F8 64 40

249 F9 64 40

250 FA 64 40

251 FB 64 40

252 FC 64 40

253 FD 64 40

254 FE 64 40

255 FF 64 40

79

BIBLIOGRAPHY
• University of York Computer Science Department – Microcomputer Communications

Project Module Website by Nick Pears http://www-course.cs.york.ac.uk/mcp

• DC Power Supply GPC-M Series Analogue Digital Type GW-Instek User Manual

• GOS – 6xxG Family Dual Trace Oscilloscope GW-Instek User Manual

• Zilog Z80 Family CPY User Manual UM0080020202

• The National Semiconductor Website www.national.com (for chip datasheets)

• Farnell InOne Website www.farnell.com (for chip costing)

Please note that some of the hardware diagrams in Appendix B are modified versions of those

found in the National Semiconductor Website’s datasheets for certain chips.

